D-FINE - детектор объектов в режиме реального времени, который предлагает улучшение регрессии bounding box в моделях DETR . D-FINE обладает высокой точностью локализации, определяя регрессию рамок как процесс итеративного уточнения распределений вероятностей.
D-FINE состоит из двух компонентов:
FDR преобразует процесс регрессии из предсказания фиксированных координат в итеративное уточнение распределений вероятностей. Эта техника дает более детальное промежуточное представление, что повышает точность локализации.
GO-LSD - двунаправленная стратегия оптимизации, которая передает знания о локализации из уточненных распределений в более ранние слои модели через самодистилляцию.
Старшие версии D-FINE-L и D-FINE-X достигают 54,0% и 55,8% AP на наборе данных COCO соответственно, работая со скоростью 124 и 78 FPS на GPU NVIDIA T4.
При предварительном обучении на Objects365 D-FINE-L и D-FINE-X показывают 57,1% и 59,3% AP, что выше всех существующих детекторов реального времени.
Разработчики D-FINE предлагают несколько предобученных моделей на датасетах Objects365 и COCO под разные задачи и мощности. Все модели поддерживают инференс на изображениях и видео с использованием ONNX Runtime, TensorRT и PyTorch:
D-FINE предоставляет инструменты для обучения, бенчмаркинга, визуализации с помощью FiftyOne и инструкции по организации наборов данных.
# Create env via conda
conda create -n dfine python=3.11.9
conda activate dfine
# Install requirements for inference
pip install -r tools/inference/requirements.txt
# Install ONNX
pip install onnx onnxsim
# Choose a model
export model=l # s, m, x
# Inference
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4
@ai_machinelearning_big_data
#AI #ML #DETR #DFine #Detection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30❤9🔥6😁2
По сути это улучшенная альтернатива Jupyter.
Как работает Marimo?
▪️ При изменении значения переменной или взаимодействии с UI-элементом, Marimo автоматически выполняет все ячейки, зависящие от этой переменной, поддерживая консистентность кода и результатов.
Отличия от Jupyter:
▪️ Формат файлов: Marimo сохраняет блокноты как чистые Python-файлы (
.py)
, облегчая интеграцию с системами контроля версий, в отличие от Jupyter, использующего формат JSON (.ipynb). ▪️ Реактивность: В Marimo изменение данных автоматически обновляет все связанные ячейки, тогда как в Jupyter это требует ручного выполнения.
Основные преимущества Marimo:
▪️ Интерактивность: Встроенные UI-элементы, такие как слайдеры и выпадающие списки, синхронизируются с кодом без необходимости в дополнительных настройках.
▪️ Отсутствие скрытых состояний и детерминированный порядок выполнения обеспечивают надежность результатов.
▪️ Поддерживает возможность исполнять блокноты как скрипты, импортировать их в другие проекты и разворачивать как веб-приложения.
Marimo представляет собой мощный инструмент для разработчиков и исследователей, стремящихся к более эффективной и надежной работе с Python-блокнотами.
В галерее Marimo представлены блокноты на все случае жизни, созданные сообществом, демонстрирующие различные возможности и сценарии использования Marimo.
@ai_machinelearning_big_data
#marimo #ds #ml #tools #opensource #datascience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51🔥14❤5🤔5