⚡️ Китайские исследователи из Shanghai Jiao Tong и Zhejiang University представили MemOS — первую в мире "операционную систему памяти" для ИИ.
Обычные LLM быстро забывают информацию, а дообучать их — долго и дорого.
В новой работе предлагают радикально другой подход: MemOS превращает память в часть операционной системы.
🟢 Память как файлы: Модель может *записывать, перемещать и удалять* знания, как будто работает с файлами, и делать это прямо во время работы, а не только на этапе обучения.
🟢 MemCube — контейнер знаний: Каждое знание упаковывается в кубик с метками времени и авторства. Планировщик сам решает, где хранить этот "куб" — в тексте, GPU‑кэше или в виде маленького патча весов.
🟢 Умная экономия: MemOS работает с 1500 токенами памяти, но достигает такой же точности, как если бы модель загружала весь контекст. При этом скорость — как у облегчённых моделей.
🟢 Мгновенная подгрузка: На тестах с Qwen2.5‑72B переключение нужных "кубов" в кэш снижает задержку первого токена на 91.4%, *без изменения ответа*.
🟢 Результаты: MemOS набрал 73.31 балла по LLM‑Judge на LOCOMO-бенчмарке — почти на 9 баллов больше ближайшего конкурента. Особенно хорошо работает на сложных задачах с несколькими шагами и временными зависимостями.
💡 Итог: память как ОС — это не просто удобно, это ускоряет модель, повышает точность и даёт контроль над знаниями.
Установка:
🟠 GitHub
🟠 Проект
@ai_machinelearning_big_data
#MemoryOS #agentmemory #rag #kvcache
Обычные LLM быстро забывают информацию, а дообучать их — долго и дорого.
В новой работе предлагают радикально другой подход: MemOS превращает память в часть операционной системы.
💡 Итог: память как ОС — это не просто удобно, это ускоряет модель, повышает точность и даёт контроль над знаниями.
Установка:
pip install MemoryOS
@ai_machinelearning_big_data
#MemoryOS #agentmemory #rag #kvcache
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤128👍76🔥40🥰6👏2🥱2😍2
Google Research продолжают развивать свою линейку специализированных медицинских ИИ-моделей, представив два важных пополнения: MedGemma и MedSigLIP.
Это серьезное пополнение экосистемы открытых и доступных инструментов для здравоохранения. Разработчики предлагают мощные базовые модели, которые можно дообучать и запускать на собственном железе, даже на потребительском GPU.
Младшая, 4-миллиардная версия, показывает себя как один из лучших открытых «малышей» (<8B), а после дообучения достигает SOTA в генерации отчетов по рентгеновским снимкам. В ходе одного из тестов 81% сгенерированных ею заключений были признаны сертифицированными радиологами достаточно точными.
Старшая, на 27 миллиардов, в текстовой версии, на бенчмарке MedQA набрала 87.7%. Это всего на 3 пункта ниже DeepSeek R1, но при этом модель требует в 10 раз меньше ресурсов для инференса.
Его задача - классификация, поиск и другие задачи со структурированным выходом. Он был создан адаптацией общей модели SigLIP на огромном массиве медицинских данных (от рентгена до гистологии и снимков глазного дна).
Они по-прежнему понимают немедицинский контекст и умеют работать с разными языками, что подтвердили исследователи из Тайваня, успешно применявшие модель в связке с литературе на традиционном китайском.
@ai_machinelearning_big_data
#AI #ML #LLM #MedGemma #MedSigLIP #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤104👍43🔥29🥱6👏5
Media is too big
VIEW IN TELEGRAM
Новая возможность, интегрированная в интерфейс Gemini, позволяет подписчикам планов Pro и Ultra создавать короткие видеоролики на основе одного статичного изображения. Для этого достаточно загрузить картинку, выбрать опцию «Видео» и текстом описать желаемый сценарий.
Google говорит, что развертывание функции уже началось, однако ее доступность может варьироваться. Проверить наличие обновления можно непосредственно в приложении Gemini или на веб-сайте.
Google Gemini App в сети X
Perplexity открыл доступ к своему ранее анонсированному веб-браузер Comet. Браузер построен на концепции «агентного ИИ», который не просто ищет информацию, а способен думать, действовать и принимать решения от имени пользователя.
Встроенный ассистент может сравнивать товары, суммировать контент и назначать встречи, превращая сложные рабочие процессы в простой диалог. Попробовать Comet могут пока только подписчики премиум-плана Perplexity Max. Более широкий доступ по приглашениям компания обещает открыть в течение лета.
reuters.com
Mistral AI расширила серию Devstral, моделей для автономной разработки ПО. В линейку вошли две версии: открытая Devstral Small 1.1 и проприетарная Devstral Medium.
Devstral Small 1.1 осталась на прежней архитектуре, с размером в 24 млрд. параметров и уже доступна на Hugging Face. Она показывает результат 53.6% в бенчмарке SWE-Bench и позиционируется как лучшая открытая модель для ИИ-агентов, работающих с кодом.
Более мощная Devstral Medium доступна через API. По заявлениям Mistral, она превосходит GPT-4.1 и Gemini 2.5 Pro в том же тесте (61.6%), но при этом обходится значительно дешевле ($0.4/M input и $2/M output.)
mistral.ai
Arm объявила, что ее процессорное расширение Scalable Matrix Extension 2 (SME2) скоро появится в новом поколении мобильных чипов для Android. Эта технология, ранее доступная в основном для серверных систем, предназначена для радикального ускорения матричных вычислений, основы большинства ML-алгоритмов.
Эффект от внедрения SME2 обещает быть заметным. По данным Arm, модель Gemma 3 работает на устройствах с этой технологией в 6 раз быстрее, а на обобщение текста из 800 слов уходит менее секунды.
Появление SME2 может дать Android-флагманам серьезное преимущество, поскольку Apple хоть и использует технологию в чипах M4 для iPad, но еще не внедрила ее в iPhone. Важно, что программная экосистема уже готова: поддержка SME2 реализована в ключевых библиотеках Android и популярных фреймворках.
androidauthority.com
В сентябре в Дубае начнет работу ресторан WOOHOO, концепция, меню и даже рабочие процессы которого были созданы искусственным интеллектом. В основе проекта лежит проприетарная LLM «Chef Aiman», обученная на десятилетиях исследований в области пищевых наук, данных о молекулярном составе продуктов и более чем тысяче мировых рецептов.
Система анализирует ингредиенты на уровне текстур и вкусов, а затем предлагает новые сочетания. Эти идеи дорабатываются командой поваров под руководством известного шефа Рейфа Отмана. В будущем основатели планируют лицензировать «Chef Aiman» другим ресторанам как инструмент для создания уникального гастрономического опыта и повышения устойчивости производства.
alarabiya.net
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍71❤42🔥17🥱7
Приходите на митап High SQL — он пройдёт 15 июля в 19:00 (по мск) офлайн в Санкт-Петербурге и онлайн из любой точки мира. Вот о чём поговорим со спикерами из ЮMoney и приглашённым экспертом Дмитрием Аношиным:
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44🔥19❤15🤣6
Новая библиотека позволяет собирать AI-процессы из компонентов — как LEGO для ИИ-агентов.
- Построение асинхронных, компонуемых пайплайнов
- Поддержка Gemini и Gemini Live API
- Основана на asyncio
- Обрабатывает мультимодальные данные: текст, изображения, аудио
- Внутри готовые агенты: real-time агент, исследователь, live-комментатор
- Разработки ИИ-агентов
- Генеративных моделей, работающих в реальном времени
- Быстрой сборки MVP с мультимодальными возможностями
Установка:
pip install genai-processors
Открытый код, готовые компоненты и интеграция с API.
• Repo: https://github.com/google-gemini/genai-processors
• Blog: https://developers.googleblog.com/en/genai-processors/
@ai_machinelearning_big_data
#DeepMind #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍75❤23🔥19👏9
💲 Amazon может вложить ещё миллиарды в Anthropic — сообщает Financial Times
Amazon рассматривает новое многомиллиардное вложение в разработчиков Claude — компанию Anthropic.
Это уже второе крупное вложение: ранее в ноябре 2024 года Amazon вложил $4 млрд, доведя общий объем инвестиций до $8 млрд, что делает его ключевым акционером компании
💰 Что известно:
— Новая инвестиция усилит позиции Amazon как крупнейшего инвестора в Anthropic (опережая Google)
— Anthropic активно использует AWS, включая чипы Trainium2 и дата-центр Project Rainier в Индиане
— Модели Claude уже интегрируются в продукты Amazon: Alexa+, Prime Video, AWS API
📊 Контекст:
— Оценка Anthropic может легко превысить $75 миллиардов.
— Годовая выручка компании превышает $4 млрд
— Amazon конкурирует с Microsoft (OpenAI) и Google за контроль над передовыми ИИ-системами
Еще стало известно, что Amazon запустит маркетплес ДЛЯ ИИ-АГЕНТОВ В ПАРТНЕРСТВЕ С ANTHROPIC
- Модель маркетплейса позволит стартапам брать плату с пользователей за ИИ-агентов
- Стартапы смогут напрямую предлагать ИИ-агентов клиентам AWS
- Маркетплейс поможет AWS и Anthropic расширить охват
А также привлечь разработчиков к использованию Claude API для создания новых агентов → рост выручки
Amazon не просто инвестирует — он строит инфраструктуру под Claude, делая ставку на долгосрочное доминирование в ИИ через облако.
🔗 Источник
@ai_machinelearning_big_data
#ml #ai #Claude #finance #anthropic #Amazon
Amazon рассматривает новое многомиллиардное вложение в разработчиков Claude — компанию Anthropic.
Это уже второе крупное вложение: ранее в ноябре 2024 года Amazon вложил $4 млрд, доведя общий объем инвестиций до $8 млрд, что делает его ключевым акционером компании
💰 Что известно:
— Новая инвестиция усилит позиции Amazon как крупнейшего инвестора в Anthropic (опережая Google)
— Anthropic активно использует AWS, включая чипы Trainium2 и дата-центр Project Rainier в Индиане
— Модели Claude уже интегрируются в продукты Amazon: Alexa+, Prime Video, AWS API
📊 Контекст:
— Оценка Anthropic может легко превысить $75 миллиардов.
— Годовая выручка компании превышает $4 млрд
— Amazon конкурирует с Microsoft (OpenAI) и Google за контроль над передовыми ИИ-системами
Еще стало известно, что Amazon запустит маркетплес ДЛЯ ИИ-АГЕНТОВ В ПАРТНЕРСТВЕ С ANTHROPIC
- Модель маркетплейса позволит стартапам брать плату с пользователей за ИИ-агентов
- Стартапы смогут напрямую предлагать ИИ-агентов клиентам AWS
- Маркетплейс поможет AWS и Anthropic расширить охват
А также привлечь разработчиков к использованию Claude API для создания новых агентов → рост выручки
Amazon не просто инвестирует — он строит инфраструктуру под Claude, делая ставку на долгосрочное доминирование в ИИ через облако.
🔗 Источник
@ai_machinelearning_big_data
#ml #ai #Claude #finance #anthropic #Amazon
👍59❤30🔥17🌭5🥰2😁2
Центральный университет разработал программу онлайн-обучения с привилегиями очной формы: студенческий билет со всеми льготами, отсрочка от армии, диплом очной формы и живая проектная работа на очных буткемпах в Москве.
Онлайн-семинары в мини-группах до 12 человек, а каждый семестр — неделя интенсивов в Москве: работа над реальными задачами бизнеса. Проживание во время интенсива для студентов из регионов полностью оплачивается.
Ведущие специалисты отрасли, например, главные тренеры школьной сборной России, которая одержала победу в первой Международной олимпиаде по искусственному интеллекту в Болгарии в 2024 году, они же тренируют сборную в этом году к Международной олимпиаде в Китае: Александр Дьяконов – руководитель направления «Искусственный интеллект» в Центральном университете, Data Scientist №1 в мире по версии Kaggle (2012), лауреат премии «Лучший ИТ-преподаватель России» (2014) и Александр Гущин – индустриальный руководитель направления «Искусственный интеллект» в Центральном университете, Kaggle Grandmaster (№5 в мире в 2017). А также Виктор Кантор – основатель ML Inside, лауреат Forbes «30 до 30», один из лучших экспертов по ML в России.
Программа предоставляет актуальные ML-инструменты глубокую теоретическую базу, карьерную поддержку, главное — проектное портфолио уже в процессе обучения и возможность получить грант, покрывающий 75% от стоимости обучения.
Заявки принимаются до 20 августа, начало обучения с сентября 2025 года
Цель программы — подготовка специалистов, которые уверенно ориентируются как в теории, так и в решении прикладных задач.
@ai_machinelearning_big_data
#news #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🥱60👍33❤26😁16🔥7🫡6🙈2
LMCache - проект, который предлагает решение по сохранению KV-кэша на CPU, диске или даже в специализированной памяти NIXL. По сути, это инструмент, который превращает одноразовые вычисления в многократно используемые блоки, экономя время и ресурсы.
Представьте, что в чат-боте пользователи часто ссылаются на один и тот же системный промпт или историю диалога. Обычно модель заново обрабатывает эти данные, но LMCache просто загружает готовый кэш. Выгрузка KV-кэшей освобождает GPU для новых задач, уменьшая TTFT (время до первого токена) вплоть до 10 раз.
Кэши можно не только выгружать, но и делиться между разными инстансами LLM. Проще говоря, если два пользователя одновременно обращаются к разным копиям модели с одинаковым запросом, система не будет дублировать работу: результаты одного prefill’а станут доступны всем. Это работает даже для неполных префиксов, например, при частичном совпадении входных данных.
Prefill и decode, которые обычно выполняются на одном GPU, теперь могут быть разнесены: первый этап обрабатывается на мощных узлах, а второй на оптимизированных для генерации. Для распределенных систем такая техника повысит пропускную способность.
Тесты разработчиков проекта показывают, что в реальных задачах задержка снижается в 3–10 раз, а GPU-циклы экономятся на повторных вычислениях.
Проект тесно интегрируется с vLLM, в репозитории есть большой набор с примерами, документация и советы по установке и настройке.
⚠️ Калькулятор KV-кеша с выбором модели, ее типа данных и количества токенов, который поможет прикинуть, сколько VRAM можно сэкономить.
@ai_machinelearning_big_data
#AI #ML #LLM #LMCache #KVCache #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤52👍41🔥19🤔6👏3