227K subscribers
3.79K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Китайские исследователи из Shanghai Jiao Tong и Zhejiang University представили MemOS — первую в мире "операционную систему памяти" для ИИ.

Обычные LLM быстро забывают информацию, а дообучать их — долго и дорого.

В новой работе предлагают радикально другой подход: MemOS превращает память в часть операционной системы.

🟢 Память как файлы: Модель может *записывать, перемещать и удалять* знания, как будто работает с файлами, и делать это прямо во время работы, а не только на этапе обучения.

🟢 MemCube — контейнер знаний: Каждое знание упаковывается в кубик с метками времени и авторства. Планировщик сам решает, где хранить этот "куб" — в тексте, GPU‑кэше или в виде маленького патча весов.

🟢 Умная экономия: MemOS работает с 1500 токенами памяти, но достигает такой же точности, как если бы модель загружала весь контекст. При этом скорость — как у облегчённых моделей.

🟢 Мгновенная подгрузка: На тестах с Qwen2.5‑72B переключение нужных "кубов" в кэш снижает задержку первого токена на 91.4%, *без изменения ответа*.

🟢 Результаты: MemOS набрал 73.31 балла по LLM‑Judge на LOCOMO-бенчмарке — почти на 9 баллов больше ближайшего конкурента. Особенно хорошо работает на сложных задачах с несколькими шагами и временными зависимостями.

💡 Итог: память как ОС — это не просто удобно, это ускоряет модель, повышает точность и даёт контроль над знаниями.

Установка: pip install MemoryOS

🟠 GitHub
🟠 Проект

@ai_machinelearning_big_data

#MemoryOS #agentmemory #rag #kvcache
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
125👍76🔥40🥰6👏2🥱2😍2