273K subscribers
3.94K photos
674 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🩺 Боксер 5 лет жил с щелчком в челюсти.

За долгие годы 17 врачей не смогли ему помочь, рентген ничего не показывал.

Чат-бот выдал диагноз за минуту: смещение сустава и рекомендовал сделать - простое упражнение языком.

Он попробовал — и щелчок исчез.

🔜 Добро пожаловать в эру ИИ-медицины.
Пациенты загружают симптомы или даже МРТ — и получают точные диагнозы с вероятностью до 92%.

LLM доверяют сложнейшие кейсы: спинальные патологии, редкие болезни крови и другие «неуловимые» диагнозы.

📊 Новые метрики подтверждают эффективность ИИ:

— MAI-DxO — MAI-DxO — это система оркестрации медицинского ИИ (AI orchestration system), разработанная для объединения разных моделей и инструментов диагностики в единую "умную" систему, которая диагностирует в 4 раза точнее, чем врачи

— HealthBench -это открытый бечмарк для оценки медицинских навыков и точности диагностики, содержит 5000 реальных медицинских cлучаев в формате чатов между пациентом и моделью.

Что самое интересно:
— Когда ИИ работает один — точность диагнозов 95%
— Когда вмешивается человек — точность диагноза падает до 75%: врачи зачастую занижают тревожность, упускают детали

Иногда именно ИИ замечает то, что упустили 17 специалистов.

📌 Источник


@ai_machinelearning_big_data


#ai #ml #medecine
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥123😁53👍4537🙉11🤔8🤬5🤗1
🔥 Китай выпускает новую опенсорс модель: Kimi K2 — llm уровня Claude 4, которая обходит DeepSeek v3, Qwen и даже GPT-4.1

Размер — 1 триллион параметров, при этом:

📊 В бенчмарках:
- 65.8% на SWE-bench Verified, против 50.2% у Claude Sonnet 4 и 40.8% у GPT-4.1
- Лучшие результаты среди открытых моделей по кодингу, математике и агентным задачам
- Архитектура MoE на базе DeepSeek V3, 1 трлн параметров, 32B активны.

Также доступна через API:

- $0.15 за миллион входных токенов (при попадании в кэш)
- $0.60 за миллион входных токенов (если кэш не сработал)
- $2.50 за миллион выходных токенов

Почти в 5 раз дешевле, чем Claude 4 Sonnet и Gemini 2.5 Pro!

🟡 Github

@ai_machinelearning_big_data


#kimi #china #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13846🔥29🥰8🤣8👏3🤔3❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ Евросоюз опубликовал свод правил для ИИ-разработчиков в преддверии AI Act.

Брюссель выпустил практическое руководство, которое должно помочь компаниям подготовиться к вступлению в силу Закона об ИИ. Документ детализирует требования к моделям общего назначения по трем ключевым направлениям: прозрачность, авторское право и безопасность.

Разработчикам предстоит документировать источники данных для обучения, предоставлять интерфейсы для аудита и внедрять фильтры для защищенного контента. Требования по безопасности включают обязательное проведение red-teaming и оценку рисков.

Нормы станут обязательными со 2 августа 2025 года, и их публикация сигнализирует об отказе регулятора откладывать сроки, несмотря на просьбы бизнеса. Штрафы за несоблюдение могут достигать 35 миллионов евро или 7% от оборота.
digital-strategy.ec.europa.eu

✔️ GitHub Copilot упрощает модель оплаты за своего кодинг-агента.

GitHub изменил модели тарификации для Copilot coding agent, делая ее более предсказуемой. Теперь каждая сессия работы с агентом, будь то создание нового pull-request или изменение существующего, будет стоить ровно один «премиум-запрос».

Это изменение устраняет неопределенность в расходах. Независимо от сложности задачи и количества затронутых файлов, стоимость сессии остается фиксированной. По заявлению GitHub, такой подход позволит пользователям делегировать агенту до 20 раз больше задач в рамках своей месячной подписки.

Стоит отметить, что хотя использование премиум-запросов стало предсказуемым, расход минут GitHub Actions все еще зависит от времени, которое требуется агенту на выполнение работы. Функция доступна в публичной бета-версии для всех платных планов GitHub Copilot.
github.blog

✔️ Создатели Manus полностью ушли из Китая из-за геополитики.

Стартап Butterfly Effect, разработчик популярного ИИ-агента Manus, ликвидировал всю свою команду в Китае. Это часть стратегии по минимизации геополитических рисков, поскольку основной целевой рынок компании - США. Ранее стартап уже перенес штаб-квартиру из Китая в Сингапур, куда переехали и его основатели.

Компания, получившая поддержку от фонда Benchmark, теперь активно нанимает сотрудников в новых офисах в Калифорнии и Токио. Решение полностью свернуть операции в КНР отражает растущую тенденцию среди технологических стартапов с глобальными амбициями. Они вынуждены дистанцироваться от Китая, чтобы избежать политического давления и обеспечить себе доступ на западные рынки.
theinformation.com

✔️ Reka выложила в опенсорс модель Flash 3.1

Стартап Reka, основанный выходцами из DeepMind и FAIR, представил новую открытую модель Reka Flash 3.1. Эта модель с 21 миллиардом параметров показывает высокую производительность в задачах, связанных с программированием, и позиционируется как сильная основа для создания ИИ-агентов. Она уже доступна на Hugging Face, через API и в Playground.

Одновременно компания выпустила библиотеку Reka Quant. Она позволяет сжимать модель до 3.5 бит практически без потери производительности - падение метрик составляет всего 1.6% по сравнению с 6.8% у стандартных методов.
reka.ai

✔️ AWS запускает маркетплейс для ИИ-агентов, Anthropic в числе первых партнеров.

Amazon Web Services на следующей неделе представит собственный маркетплейс для ИИ-агентов. Платформа, запуск которой ожидается на саммите AWS в Нью-Йорке, позволит стартапам напрямую предлагать свои разработки огромной базе корпоративных клиентов облачного гиганта. Anthropic станет одним из ключевых партнеров на старте, что даст ему серьезное преимущество в конкуренции с OpenAI.

Модель работы будет напоминать магазины приложений: AWS будет взимать комиссию, а разработчики смогут продавать своих агентов по подписке. Запуском собственной площадки Amazon следует тренду, заданному конкурентами. Аналогичные маркетплейсы уже есть у Google Cloud, Microsoft, Salesforce и ServiceNow.
techcrunch.com

✔️ OpenAI упустили Windsurf — Google нанял ключевых людей и взял лицензии, не покупая компанию.

Google заплатил $2.4 млрд, на $600 млн меньше, чем OpenAI.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1281👍50🔥20🗿8🤣5🥰2
🌟 Теперь поговорим подобнее про Kimina-Prover-72B:

Это модель, которая не просто доказывает теоремы, а учится на своих ошибках.

Kimina-Prover-72B создана на базе Qwen2.5-72B, которая бьет рекорды в формальной математике на Lean 4 и ее облегченные версии 8 и 1,7 миллиарда параметров.

Numina - это некоммерческая научная коллаборация, ориентированная на развитие ИИ в области математики. Ее миссия: создание и публикация обширных баз данных математических задач, разработку open-source ИИ-решателя для их обработки и инструментов для поддержки совместной работы людей и ИИ в фундаментальных науках.


На популярном бенчмарке miniF2F Kimina-Prover-72B достигла внушительной точности в 92.2%, оставив позади Deepseek-Prover-V2 671B.

🟡Ключевая фишка Kimina-Prover - агентный фреймворк для поиска доказательств Test-Time Reinforcement Learning.

Вместо того чтобы пытаться решить сложную задачу в лоб, система научилась декомпозировать ее. Она самостоятельно генерирует, комбинирует и применяет промежуточные утверждения, или леммы, выстраивая из них длинные логические цепочки. По сути, это рекурсивный поиск: для доказательства основной теоремы модель может сначала доказать несколько вспомогательных лемм.

🟡Механика доказательств.

Система отслеживает «рейтинг полезности» каждой леммы и отбраковывает те, что ведут в тупик. Вторым эшелоном идет механизм проверки на вменяемость. Прежде чем использовать новую лемму, модель пытается доказать ее отрицание. Если это удается, значит, лемма противоречива и ее сразу выбрасывают. Такая комбинация гарантирует логическую строгость и надежность всего доказательства.

🟡Kimina-Prover умеет учиться на ошибках.

В отличие от других систем, которые в случае неудачи просто начинают заново, Kimina-Prover умеет читать сообщения об ошибках от компилятора Lean и предлагать исправления.

Для этого ее специально дообучали на датасете из комбинаций «неверное доказательство – фидбэк – верное доказательство». Чтобы обучение шло стабильно, использовали стратегию Batched Failure Replay: все неудачные попытки с одной итерации собираются и используются как обучающий батч для следующей. И это оказалось куда эффективнее, чем бездумный перебор вариантов при том же бюджете вычислений.


📌Лицензирование: MIT License.


🟡Статья
🟡Набор моделей
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #TTRL #Reasoning #KiminaProver
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
105🔥62👍46😁6👏4👌2🤔1
🔅 Vibe Kanban — оркестрация AI-кодеров в одном окне

Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.

▶️Что умеет:
- параллельный запуск агентов
- трекинг задач
- переключение между моделями на лету
- встроенный review и контроль над результатами
- backend написан на Rust, frontend на React, всё разворачивается локально
Полностью open-source

🟡 Репозиторий: https://github.com/BloopAI/vibe-kanban
🟡Документация: https://www.vibekanban.com/


@ai_machinelearning_big_data

#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
97👍60🔥38🥰4😁3👏1
📌 ThinkSound: новый video-to-sound инструмент

ThinkSound — духовный наследник mmAudio — который способен генерировать звук к видео с высокой точностью.

Поддерживает chain-of-thought промпты: позволяет по шагам объяснить, как должен звучать объект (например: «это металл, он падает на плитку, должно звучать звонкой эхо»)
Учитывает контекст сцены, физику движения объектов, состав материалов и многое другое
Работает с видео как reasoning-модель, а не просто визуально-аудиофильтр

В демках можно послушать звук шагов на песке, звон разбитого стекла, шум дождя — всё сгенерировано на лету, без записанных сэмплов.

Из минусов - сложно подобрать промпт, но когда получается, то модель выдает годноту.

🟡Github: https://github.com/FunAudioLLM/ThinkSound
🟡Демо: https://thinksound-project.github.io/
🟡Статья: https://arxiv.org/pdf/2506.21448
🟡Проект: https://ThinkSound-Demo.github.io

@ai_machinelearning_big_data

#python #videotosound
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
85👍61🔥27👏9❤‍🔥2😁2😐2
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман

По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.

Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.

Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.

📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов

Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.

#Apple #Mistral #AI #LLM #ГонкаИИ

@machinelearning_interview
115👍89🔥38😁25🥱14😢10🤔9🗿5❤‍🔥2👏2
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Дженсен Хуанг: США должны продавать чипы даже Китаю — это усилит наше лидерство в AI

Глава NVIDIA объяснил, почему экспорт AI-чипов — это не слабость, а стратегия:

🗣 «Половина AI-разработчиков в мире — китайцы. Пусть они строят свои системы на нашей технологии

💡 Что он имеет в виду:

— Если весь мир (включая Китай) работает на американских чипах, платформах и фреймворках,
— США получают техническое и инфраструктурное преимущество,
— А значит — долгосрочное лидерство в AI, даже если некоторые страны развивают собственные модели.

🔍 А как же риски? Военные, шпионские?

> «Они не будут строить военные системы на чужих чипах. Просто не могут себе это позволить

Технологии, от которых зависит твой конкурент— это не оружие. Это рычаг влияния.

И чем больше стран завязаны на американском стеке — тем выше шансы, что США останутся в центре мировой AI-инфраструктуры.

Еще из интересного, после того как MIT выпустили исследование о том, что ИИ якобы снижает когнитивные способности человека, Хуанг в своём стиле — дал "жесткий" ответ:

> “Я не читал это исследование, лол”
> “Я каждый день пользуюсь ИИ — и мои когнитивные навыки только растут”

Критическое мышление никто не отменял
> “Я не принимаю ответ как есть — я его анализирую, критикую, уточняю”
> “Такой подход и развивает мышлени

Полное интервью Дженсена

@ai_machinelearning_big_data

#ai #Ml #nvidia
Please open Telegram to view this post
VIEW IN TELEGRAM
153👍95😁34🤣21🔥98🙉3
🔅 Elon Musk винит "плохие данные" за провалы Grok. Но это не вся правда

Elon Musk заявил, что проблемы Grok (например когда модель считала себя Гитлером) связаны с "плохими обучающими данными", и пообещал, что в версии v7 всё будет исправлено, потому что они "очистят датасет".

▶️ Звучит просто. Но если всё дело в данных — зачем тогда продолжают выпускать Grok-4, зная, что он обучен на том же грязном корпусе?

Это больше похоже на попытку перевести фокус с реальных проблем, которые глубже и серьёзнее:

– Выравнивание (alignment) становится всё сложнее
– Проблемы не только в данных, а в самой архитектуре, управлении памятью, RLHF и недостаточной прозрачности модели
– “Плохие данные” — это симптом, а не корень проблемы

Возможно, Grok просто не справляется с масштабом данных, и это не фиксятся «переобучением на v7».

📌 Мы всё ещё в той точке, где модели растут быстрее, чем понимание того, как их контролировать.

@ai_machinelearning_big_data

#elonmusk #grok
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10651😁28😨18👍16💯10🤔9👌5🌭5
🔥 Сейчас проходит ICML 2025 — одна из главных конференций по машинному обучению.

Команда AI VK всю неделю делится обзорами самых интересных работ.

📌 Сегодня в центре внимания — трансформерная архитектура нового поколения: быстрая, простая и без softmax.
Авторы статьи *“MatMuls are Enough”* предлагают кардинально упрощённую модель, в которой механизм внимания сводится к чистым матричным перемножениям без нелинейностей, dropout и маскировок.

🔧 В архитектуре:
▪️ Удалён softmax — вообще ничего не добавлено взамен
▪️ Вместо нескольких голов внимания — одна большая
▪️ Упрощены нормализации и убраны residual-соединения
▪️ Всё написано на чистом PyTorch, без CUDA-оптимизаций

📈 Результат — линейная сложность по длине текста, отличная переносимость между устройствами и SOTA на GLUE и Long Range Arena.

Честно говоря, очень достойный претендент на главную инженерную идею ICML.

@ai_machinelearning_big_data
👍103🥱53❤‍🔥36🔥349🤣5🐳3👻1
Forwarded from Python/ django
This media is not supported in your browser
VIEW IN TELEGRAM
🛠 Вышел новый генератор CAD‑моделей по чертежам — и он реально работает!

GenCAD умеет превращать чертежи в 3D‑модели и сразу генерирует параметрический CAD‑код. Для сложных и детализированных объектов он пока не подойдет, но с простыми деталями вроде винтиков и креплений справляется отлично.

📎 Идеально для быстрого прототипирования стандартных элементов.

📄 Статья: https://openreview.net/pdf?id=e817c1wEZ6
🔗 Сайт: https://gencad.github.io
💻 Код: https://github.com/ferdous-alam/GenCAD

@pythonl - погружение в Python
🔥12738🤷‍♂16🥰12👍8👏3😁3👨‍💻1