Support Vector Machine Notes ๐๏ธ .pdf
8.6 MB
Support Vector Machine Notes
#SVM #machineLearning #AI #python
https://t.iss.one/codeprogrammerโญ๏ธ
๐ Support us:
๐ฅ BTC:
๐ฒ USDT TRC20:
๐ฌ TON:
๐ฆ PAYPAL:
https://www.paypal.me/HusseinSheikho
#SVM #machineLearning #AI #python
https://t.iss.one/codeprogrammer
bc1qgjmr3ffh48jw5vw2tqad9useumutt5tql0pa6w
TMzAr8AFcZ1n5RXZa3BHPXHBRqugx9Skr7
UQAVMaOmfh8vsaXTykpBX45A3tsYv4Guo09eMw
1Tl_uSYFcqhttps://www.paypal.me/HusseinSheikho
Please open Telegram to view this post
VIEW IN TELEGRAM
๐4
Forwarded from Python | Machine Learning | Coding | R
Data Science Cheat Sheets
Quick help to make a data scientist's life easier
About Dataset
A collection of cheat sheets for various data-science related languages and topics
https://t.iss.one/codeprogrammer๐
๐ก #deeplearning #AI #ML #python
Quick help to make a data scientist's life easier
About Dataset
A collection of cheat sheets for various data-science related languages and topics
https://t.iss.one/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐4โค1
Forwarded from Python | Machine Learning | Coding | R
@CodeProgrammer Data Science Cheat Sheets.zip
596.3 MB
Data Science Cheat Sheets
Quick help to make a data scientist's life easierโ
https://t.iss.one/codeprogrammer๐
๐ก #deeplearning #AI #ML #python
Quick help to make a data scientist's life easier
https://t.iss.one/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐4
This media is not supported in your browser
VIEW IN TELEGRAM
Recurrent Neural Network (RNN) by hand โ๏ธ Excel
๐ Tags: #python #ML #RNN
https://t.iss.one/codeprogrammerโญ๏ธ
Download Excel file๐
https://t.iss.one/+Tdshx2j5cZ00N2Ji
https://t.iss.one/codeprogrammer
Download Excel file
https://t.iss.one/+Tdshx2j5cZ00N2Ji
Please open Telegram to view this post
VIEW IN TELEGRAM
๐3โค2
๐๐ฏ2024 Highly demanded Top 100+ IT Training courses FREE Giveaway in Networking, Project Management, Cloud and Cyber security including #CCNA 200-301, #CCNP 350-401 #Comptia, #PMP, #AWS, #Azure #Python, #Excel, #AI, #Google courses...... โฌ๏ธ๐
โจGet now & start whenever you want! Don't miss this chance to kickstart your IT career in 2024!โจ
๐๐จโ๐ปFree CCNA Training Course: https://bit.ly/3BoYEdH
๐๐๏ธEnroll Free Online Course: https://bit.ly/4dru404
๐๐Download Free #IT Study Materials:https://bit.ly/3Y213Uj
๐๐ฒContact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
๐๐ JOIN IT Study GROUP to Get Madness Discount ๐: https://chat.whatsapp.com/HqzBlMaOPci0wYvkEtcCDa
๐Follow Social Media for Free e-Book:
https://linktr.ee/SPOTOSocialMedia
โจGet now & start whenever you want! Don't miss this chance to kickstart your IT career in 2024!โจ
๐๐จโ๐ปFree CCNA Training Course: https://bit.ly/3BoYEdH
๐๐๏ธEnroll Free Online Course: https://bit.ly/4dru404
๐๐Download Free #IT Study Materials:https://bit.ly/3Y213Uj
๐๐ฒContact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
๐๐ JOIN IT Study GROUP to Get Madness Discount ๐: https://chat.whatsapp.com/HqzBlMaOPci0wYvkEtcCDa
๐Follow Social Media for Free e-Book:
https://linktr.ee/SPOTOSocialMedia
๐2โค1
This media is not supported in your browser
VIEW IN TELEGRAM
Transformer by Hand โ๏ธ in 5 Minutes with Anna Rahn
๐ Tags: #python #ML #Transformer
https://t.iss.one/codeprogrammerโญ๏ธ
https://t.iss.one/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
๐6โค1
DeepSeek-V3 Technical Report
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in #DeepSeek V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Paper: https://arxiv.org/pdf/2412.19437v1.pdf
Code: https://github.com/deepseek-ai/deepseek-v3
#aiagents #ai #llm #ml #machinelearning #python
https://t.iss.one/DataScienceT๐
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in #DeepSeek V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Paper: https://arxiv.org/pdf/2412.19437v1.pdf
Code: https://github.com/deepseek-ai/deepseek-v3
#aiagents #ai #llm #ml #machinelearning #python
https://t.iss.one/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
๐2โค1
MiniCPM-V: A GPT-4V Level MLLM on Your Phone
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
Paper: https://arxiv.org/pdf/2408.01800v1.pdf
Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v
Datasets: Video-MME
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics
https://t.iss.one/DataScienceTโค๏ธ
The recent surge of Multimodal Large Language Models (MLLMs) has fundamentally reshaped the landscape of #AI research and industry, shedding light on a promising path toward the next AI milestone. However, significant challenges remain preventing MLLMs from being practical in real-world applications. The most notable challenge comes from the huge cost of running an MLLM with a massive number of parameters and extensive computation. As a result, most MLLMs need to be deployed on high-performing cloud servers, which greatly limits their application scopes such as mobile, offline, energy-sensitive, and privacy-protective scenarios. In this work, we present MiniCPM-V, a series of efficient #MLLMs deployable on end-side devices. By integrating the latest MLLM techniques in architecture, pretraining and alignment, the latest MiniCPM-Llama3-V 2.5 has several notable features: (1) Strong performance, outperforming GPT-4V-1106, Gemini Pro and Claude 3 on OpenCompass, a comprehensive evaluation over 11 popular benchmarks, (2) strong #OCR capability and 1.8M pixel high-resolution #image perception at any aspect ratio, (3) trustworthy behavior with low hallucination rates, (4) multilingual support for 30+ languages, and (5) efficient deployment on mobile phones. More importantly, MiniCPM-V can be viewed as a representative example of a promising trend: The model sizes for achieving usable (e.g., GPT-4V) level performance are rapidly decreasing, along with the fast growth of end-side computation capacity. This jointly shows that GPT-4V level MLLMs deployed on end devices are becoming increasingly possible, unlocking a wider spectrum of real-world AI applications in the near future.
Paper: https://arxiv.org/pdf/2408.01800v1.pdf
Codes:
https://github.com/OpenBMB/MiniCPM-o
https://github.com/openbmb/minicpm-v
Datasets: Video-MME
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics
https://t.iss.one/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
๐3
Search-o1: Agentic Search-Enhanced Large Reasoning Models
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems.
paper: https://arxiv.org/pdf/2501.05366v1.pdf
Code: https://github.com/sunnynexus/search-o1
Datasets: Natural Questions - TriviaQA - MATH - HotpotQA - GPQA - Bamboogle
#Search_o1 #LargeReasoningModels #AgenticRAG #ReasonInDocuments #DynamicKnowledgeRetrieval #ComplexReasoning #ScienceMathCoding #OpenDomainQA #TrustworthyAI #IntelligentSystems #python
https://t.iss.one/DataScienceT๐ฑ
Large reasoning models (LRMs) like OpenAI-o1 have demonstrated impressive long stepwise reasoning capabilities through large-scale reinforcement learning. However, their extended reasoning processes often suffer from knowledge insufficiency, leading to frequent uncertainties and potential errors. To address this limitation, we introduce \textbf{Search-o1}, a framework that enhances LRMs with an agentic retrieval-augmented generation (RAG) mechanism and a Reason-in-Documents module for refining retrieved documents. Search-o1 integrates an agentic search workflow into the reasoning process, enabling dynamic retrieval of external knowledge when LRMs encounter uncertain knowledge points. Additionally, due to the verbose nature of retrieved documents, we design a separate Reason-in-Documents module to deeply analyze the retrieved information before injecting it into the reasoning chain, minimizing noise and preserving coherent reasoning flow. Extensive experiments on complex reasoning tasks in science, mathematics, and coding, as well as six open-domain QA benchmarks, demonstrate the strong performance of Search-o1. This approach enhances the trustworthiness and applicability of LRMs in complex reasoning tasks, paving the way for more reliable and versatile intelligent systems.
paper: https://arxiv.org/pdf/2501.05366v1.pdf
Code: https://github.com/sunnynexus/search-o1
Datasets: Natural Questions - TriviaQA - MATH - HotpotQA - GPQA - Bamboogle
#Search_o1 #LargeReasoningModels #AgenticRAG #ReasonInDocuments #DynamicKnowledgeRetrieval #ComplexReasoning #ScienceMathCoding #OpenDomainQA #TrustworthyAI #IntelligentSystems #python
https://t.iss.one/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
๐3โค1
๐ Boost Your IT Exam Prep with SPOTO's FREE Study Materials! ๐
๐ก Ready to Pass Your IT Exam?
SPOTO is here to help you succeed! Get SPOTO FREE IT study materials to jumpstart your certification journey. Whether you're preparing for #Cisco, #AWS, #PMP, #Python, #Excel, #Google, #Microsoft, or other certifications, we've got you covered.
๐๐Download Free IT Certs Exam E-book: https://bit.ly/4fJSoLP
๐๐ฉโ๐ปTest Your IT Skills for Free: https://bit.ly/3PoKH39
๐๐Download Free Cloud Certs Study Materials:https://bit.ly/4gI4KWk
๐๐ฒContact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
๐๐ JOIN IT Study GROUP๐: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
๐ก Ready to Pass Your IT Exam?
SPOTO is here to help you succeed! Get SPOTO FREE IT study materials to jumpstart your certification journey. Whether you're preparing for #Cisco, #AWS, #PMP, #Python, #Excel, #Google, #Microsoft, or other certifications, we've got you covered.
๐๐Download Free IT Certs Exam E-book: https://bit.ly/4fJSoLP
๐๐ฉโ๐ปTest Your IT Skills for Free: https://bit.ly/3PoKH39
๐๐Download Free Cloud Certs Study Materials:https://bit.ly/4gI4KWk
๐๐ฒContact for 1v1 IT Certs Exam Help: https://wa.link/k0vy3x
๐๐ JOIN IT Study GROUP๐: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
โค2
Forwarded from Python | Machine Learning | Coding | R
Some people asked me about a resource for learning about Transformers.
Here's a good one I am sharing again -- it covers just about everything you need to know.
brandonrohrer.com/transformers
Amazing stuff. It's totally worth your weekend.
https://t.iss.one/CodeProgrammer
Here's a good one I am sharing again -- it covers just about everything you need to know.
brandonrohrer.com/transformers
Amazing stuff. It's totally worth your weekend.
#Transformers #DeepLearning #NLP #AI #MachineLearning #SelfAttention #DataScience #Technology #Python #LearningResource
https://t.iss.one/CodeProgrammer
๐5
Forwarded from Python | Machine Learning | Coding | R
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
https://t.iss.one/CodeProgrammer๐ฅ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐7
The Hundred-Page Language Models Book
Read it:
https://github.com/aburkov/theLMbook
Read it:
https://github.com/aburkov/theLMbook
#LLM #NLP #ML #AI #PYTHON #PYTORCH
https://t.iss.one/DataScienceM
๐4
Executable Code Actions Elicit Better LLM Agents
1 Feb 2024 ยท Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji
Paper: https://arxiv.org/pdf/2402.01030v4.pdf
Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act
Datasets: MMLU - GSM8K - HumanEval - MATH
https://t.iss.one/DataScienceTโ ๏ธ
1 Feb 2024 ยท Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji
Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating #JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source #LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with #Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.
Paper: https://arxiv.org/pdf/2402.01030v4.pdf
Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act
Datasets: MMLU - GSM8K - HumanEval - MATH
https://t.iss.one/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
โค3๐3๐ฅ1๐1
#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
๐10โค2
๐ 2025 Top IT Certification โ Free Study Materials Are Here!
๐ฅWhether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification โ SPOTO has got you covered!
๐ Download the FREE IT Certs Exam E-book:
๐ https://bit.ly/4lNVItV
๐ง Test Your IT Skills for FREE:
๐ https://bit.ly/4imEjW5
โ๏ธ Download Free AI Materials :
๐ https://bit.ly/3F3lc5B
๐ Need 1-on-1 IT Exam Help? Contact Now:
๐ https://wa.link/k0vy3x
๐ Join Our IT Study Group for Daily Updates & Tips:
๐ https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
๐ฅWhether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification โ SPOTO has got you covered!
๐ Download the FREE IT Certs Exam E-book:
๐ https://bit.ly/4lNVItV
๐ง Test Your IT Skills for FREE:
๐ https://bit.ly/4imEjW5
โ๏ธ Download Free AI Materials :
๐ https://bit.ly/3F3lc5B
๐ Need 1-on-1 IT Exam Help? Contact Now:
๐ https://wa.link/k0vy3x
๐ Join Our IT Study Group for Daily Updates & Tips:
๐ https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
โค3
This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA introduces Describe Anything Model (DAM)
a new state-of-the-art model designed to generate rich, detailed descriptions for specific regions in images and videos. Users can mark these regions using points, boxes, scribbles, or masks.
DAM sets a new benchmark in multimodal understanding, with open-source code under the Apache license, a dedicated dataset, and a live demo available on Hugging Face.
Explore more below:
Paper: https://lnkd.in/dZh82xtV
Project Page: https://lnkd.in/dcv9V2ZF
GitHub Repo: https://lnkd.in/dJB9Ehtb
Hugging Face Demo: https://lnkd.in/dXDb2MWU
Review: https://t.ly/la4JD
a new state-of-the-art model designed to generate rich, detailed descriptions for specific regions in images and videos. Users can mark these regions using points, boxes, scribbles, or masks.
DAM sets a new benchmark in multimodal understanding, with open-source code under the Apache license, a dedicated dataset, and a live demo available on Hugging Face.
Explore more below:
Paper: https://lnkd.in/dZh82xtV
Project Page: https://lnkd.in/dcv9V2ZF
GitHub Repo: https://lnkd.in/dJB9Ehtb
Hugging Face Demo: https://lnkd.in/dXDb2MWU
Review: https://t.ly/la4JD
#NVIDIA #DescribeAnything #ComputerVision #MultimodalAI #DeepLearning #ArtificialIntelligence #MachineLearning #OpenSource #HuggingFace #GenerativeAI #VisualUnderstanding #Python #AIresearch
https://t.iss.one/DataScienceTโ
Please open Telegram to view this post
VIEW IN TELEGRAM
๐5
Forwarded from Python | Machine Learning | Coding | R
๐ฏ ุงุจุฏุฃ ุฑุญูุชู ุงูุงุญุชุฑุงููุฉ ูู ุงูุจุฑู
ุฌุฉ ู
ุน
#Python_Mastery_Course ๐
ูู ุชุฑุบุจ ุจุชุนูู ูุบุฉ ุงูุจุฑู ุฌุฉ ุงูุฃูุซุฑ ุทูุจูุง ูู ุงูุนุงูู ุ
ูู ุชุญูู ุจุงููุตูู ุฅูู ู ุฌุงูุงุช ู ุซู ุงูุฐูุงุก ุงูุงุตุทูุงุนูุ ุชุญููู ุงูุจูุงูุงุช ุฃู ุชุตู ูู ุงููุงุฌูุงุชุ
๐ข ูุฐู ุงูุฏูุฑุฉ ุฎูุตุตุช ูุชููู ููุทุฉ ุงูุทูุงูู ูุญู ุงูู ุณุชูุจู!
________________________________________
๐ ู ุงุฐุง ุณุชุชุนูู ูู ูุฐู ุงูุฏูุฑุฉุ
๐น ุงููุญุฏุฉ 1: ุฃุณุงุณูุงุช ุจุงูุซูู (ุงูู ุชุบูุฑุงุช โ ุฃููุงุน ุงูุจูุงูุงุช โ ุงูุนู ููุงุช โ ุฃุณุงุณูุงุช ุงูููุฏ)
๐น ุงููุญุฏุฉ 2: ุงูุชุญูู ูู ุณูุฑ ุงูุจุฑูุงู ุฌ (ุงูุดุฑูุท โ ุงูุญููุงุช โ ุฃูุงู ุฑ ุงูุชุญูู )
๐น ุงููุญุฏุฉ 3: ููุงูู ุงูุจูุงูุงุช (ููุงุฆู โ ููุงู ูุณ โ ู ุฌู ูุนุงุช โ Tuples)
๐น ุงููุญุฏุฉ 4: ุงูุฏูุงู (ุฅูุดุงุก โ ู ุนุงู ูุงุช โ ุงููุทุงู โ ุงูุชูุฑุงุฑ)
๐น ุงููุญุฏุฉ 5: ุงููุญุฏุงุช (Modules)
๐น ุงููุญุฏุฉ 6: ุงูุชุนุงู ู ู ุน ุงูู ููุงุช ูู ููุงุช CSV
๐น ุงููุญุฏุฉ 7: ู ุนุงูุฌุฉ ุงูุงุณุชุซูุงุกุงุช ุจุงุญุชุฑุงู
๐น ุงููุญุฏุฉ 8: ุงูุจุฑู ุฌุฉ ุงููุงุฆููุฉ (OOP)
๐น ุงููุญุฏุฉ 9: ุงูู ูุงููู ุงูู ุชูุฏู ุฉ:
โโโ ุงูู ููุฏุงุช (Generators)
โโโ ุงููุงุฆูุงุช ุงููุงุจูุฉ ููุชูุฑุงุฑ (Iterators)
โโโ ุงูู ุฒููุงุช (Decorators)
๐ก ุนูุฏ ุงูุชูุงุฆู ุณุชููู ูุงุฏุฑูุง ุนูู:
โ๏ธ ุจูุงุก ู ุดุงุฑูุน ุญููููุฉ ุจูุบุฉ ุจุงูุซูู
โ๏ธ ุงูุงูุชูุงู ุจุซูุฉ ุฅูู ู ุฌุงูุงุช ู ุชูุฏู ุฉ ู ุซู ุงูุฐูุงุก ุงูุงุตุทูุงุนู ูุชุญููู ุงูุจูุงูุงุช
โ๏ธ ุฃุชู ุชุฉ ุงูู ูุงู ูุงูุชุนุงู ู ู ุน ุงูุจูุงูุงุช ุจุงุญุชุฑุงู
๐ฅ ูุธุงู ุงูุฏูุฑุฉ:
โข ุจุซ ู ุจุงุดุฑ Live ู ุน ุงูู ุฏุฑุจ ุฏ. ู ุญู ุฏ ุนู ุงุฏ ุนุฑูู
โข ุฌู ูุน ุงูู ุญุงุถุฑุงุช ุณุชูุฑูุน ุนูู ุงูู ููุน ูุชุดุงูุฏูุง ูู ุงูููุช ุงูุฐู ููุงุณุจู
๐ ู ุฏุฉ ุงูุฏูุฑุฉ: 25 ุณุงุนุฉ ุชุฏุฑูุจูุฉ
๐ ุชุงุฑูุฎ ุงูุจุฏุงูุฉ:15- 6
๐ฐ ุฎุตู ููุญุฌุฒ ุงูู ุจูุฑ
ุชูุงุตู ุงูุขู ู ุน ุฐูุฑ ููุฏ ุงูุฏูุฑุฉ"001"
https://t.iss.one/Agartha_Support
#Python_Mastery_Course ๐
ูู ุชุฑุบุจ ุจุชุนูู ูุบุฉ ุงูุจุฑู ุฌุฉ ุงูุฃูุซุฑ ุทูุจูุง ูู ุงูุนุงูู ุ
ูู ุชุญูู ุจุงููุตูู ุฅูู ู ุฌุงูุงุช ู ุซู ุงูุฐูุงุก ุงูุงุตุทูุงุนูุ ุชุญููู ุงูุจูุงูุงุช ุฃู ุชุตู ูู ุงููุงุฌูุงุชุ
๐ข ูุฐู ุงูุฏูุฑุฉ ุฎูุตุตุช ูุชููู ููุทุฉ ุงูุทูุงูู ูุญู ุงูู ุณุชูุจู!
________________________________________
๐ ู ุงุฐุง ุณุชุชุนูู ูู ูุฐู ุงูุฏูุฑุฉุ
๐น ุงููุญุฏุฉ 1: ุฃุณุงุณูุงุช ุจุงูุซูู (ุงูู ุชุบูุฑุงุช โ ุฃููุงุน ุงูุจูุงูุงุช โ ุงูุนู ููุงุช โ ุฃุณุงุณูุงุช ุงูููุฏ)
๐น ุงููุญุฏุฉ 2: ุงูุชุญูู ูู ุณูุฑ ุงูุจุฑูุงู ุฌ (ุงูุดุฑูุท โ ุงูุญููุงุช โ ุฃูุงู ุฑ ุงูุชุญูู )
๐น ุงููุญุฏุฉ 3: ููุงูู ุงูุจูุงูุงุช (ููุงุฆู โ ููุงู ูุณ โ ู ุฌู ูุนุงุช โ Tuples)
๐น ุงููุญุฏุฉ 4: ุงูุฏูุงู (ุฅูุดุงุก โ ู ุนุงู ูุงุช โ ุงููุทุงู โ ุงูุชูุฑุงุฑ)
๐น ุงููุญุฏุฉ 5: ุงููุญุฏุงุช (Modules)
๐น ุงููุญุฏุฉ 6: ุงูุชุนุงู ู ู ุน ุงูู ููุงุช ูู ููุงุช CSV
๐น ุงููุญุฏุฉ 7: ู ุนุงูุฌุฉ ุงูุงุณุชุซูุงุกุงุช ุจุงุญุชุฑุงู
๐น ุงููุญุฏุฉ 8: ุงูุจุฑู ุฌุฉ ุงููุงุฆููุฉ (OOP)
๐น ุงููุญุฏุฉ 9: ุงูู ูุงููู ุงูู ุชูุฏู ุฉ:
โโโ ุงูู ููุฏุงุช (Generators)
โโโ ุงููุงุฆูุงุช ุงููุงุจูุฉ ููุชูุฑุงุฑ (Iterators)
โโโ ุงูู ุฒููุงุช (Decorators)
๐ก ุนูุฏ ุงูุชูุงุฆู ุณุชููู ูุงุฏุฑูุง ุนูู:
โ๏ธ ุจูุงุก ู ุดุงุฑูุน ุญููููุฉ ุจูุบุฉ ุจุงูุซูู
โ๏ธ ุงูุงูุชูุงู ุจุซูุฉ ุฅูู ู ุฌุงูุงุช ู ุชูุฏู ุฉ ู ุซู ุงูุฐูุงุก ุงูุงุตุทูุงุนู ูุชุญููู ุงูุจูุงูุงุช
โ๏ธ ุฃุชู ุชุฉ ุงูู ูุงู ูุงูุชุนุงู ู ู ุน ุงูุจูุงูุงุช ุจุงุญุชุฑุงู
๐ฅ ูุธุงู ุงูุฏูุฑุฉ:
โข ุจุซ ู ุจุงุดุฑ Live ู ุน ุงูู ุฏุฑุจ ุฏ. ู ุญู ุฏ ุนู ุงุฏ ุนุฑูู
โข ุฌู ูุน ุงูู ุญุงุถุฑุงุช ุณุชูุฑูุน ุนูู ุงูู ููุน ูุชุดุงูุฏูุง ูู ุงูููุช ุงูุฐู ููุงุณุจู
๐ ู ุฏุฉ ุงูุฏูุฑุฉ: 25 ุณุงุนุฉ ุชุฏุฑูุจูุฉ
๐ ุชุงุฑูุฎ ุงูุจุฏุงูุฉ:15- 6
๐ฐ ุฎุตู ููุญุฌุฒ ุงูู ุจูุฑ
ุชูุงุตู ุงูุขู ู ุน ุฐูุฑ ููุฏ ุงูุฏูุฑุฉ"001"
https://t.iss.one/Agartha_Support
Telegram
Agartha Support
Forwarded from Python | Machine Learning | Coding | R
๐ FREE IT Study Kits for 2025 โ Grab Yours Now!
Just found these zero-cost resources from SPOTO๐
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
โ 100% Free
โ No signup traps
โ Instantly downloadable
๐ IT Certs E-book: https://bit.ly/4fJSoLP
โ๏ธ Cloud & AI Kits: https://bit.ly/3F3lc5B
๐ Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
๐ง Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together ๐ช
๐ Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
๐ฒ 1-on-1 Exam Help: https://wa.link/k0vy3x
๐Last 24 HOURS to grab Mid-Year Mega Sale prices๏ผDonโt miss Lucky Draw๐
https://bit.ly/43VgcbT
Just found these zero-cost resources from SPOTO๐
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
โ 100% Free
โ No signup traps
โ Instantly downloadable
๐ IT Certs E-book: https://bit.ly/4fJSoLP
โ๏ธ Cloud & AI Kits: https://bit.ly/3F3lc5B
๐ Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
๐ง Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together ๐ช
๐ Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
๐ฒ 1-on-1 Exam Help: https://wa.link/k0vy3x
๐Last 24 HOURS to grab Mid-Year Mega Sale prices๏ผDonโt miss Lucky Draw๐
https://bit.ly/43VgcbT
Forwarded from Python | Machine Learning | Coding | R
๐ 2025 FREE Study Recourses from SPOTO for yโall โ Donโt Miss Out!
โ 100% Free Downloads
โ No signup / spam
๐ #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
๐ #Cloud Computing: https://bit.ly/45Rj1gm
โ๏ธ #AI Kits: https://bit.ly/4m4bHTc
๐ #CCNA Courses: https://bit.ly/45TL7rm
๐ง Free Online Practice โ Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! ๐ฅ
Amazing Discounts for ๐ CCNA 200-301 ๐ CCNP 400-007 and moreโฆ
๐ฒ Contact admin to grab them: https://wa.link/uxde01
โ 100% Free Downloads
โ No signup / spam
๐ #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
๐ #Cloud Computing: https://bit.ly/45Rj1gm
โ๏ธ #AI Kits: https://bit.ly/4m4bHTc
๐ #CCNA Courses: https://bit.ly/45TL7rm
๐ง Free Online Practice โ Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! ๐ฅ
Amazing Discounts for ๐ CCNA 200-301 ๐ CCNP 400-007 and moreโฆ
๐ฒ Contact admin to grab them: https://wa.link/uxde01
โค1