#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤2
✨VADER: Towards Causal Video Anomaly Understanding with Relation-Aware Large Language Models
📝 Summary:
VADER is an LLM framework enhancing video anomaly understanding. It integrates keyframe object relations and visual cues to provide detailed, causally grounded descriptions and robust question answering, advancing explainable anomaly analysis.
🔹 Publication Date: Published on Nov 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2511.07299
• PDF: https://arxiv.org/pdf/2511.07299
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#LLM #VideoAnalytics #AnomalyDetection #Causality #ExplainableAI
📝 Summary:
VADER is an LLM framework enhancing video anomaly understanding. It integrates keyframe object relations and visual cues to provide detailed, causally grounded descriptions and robust question answering, advancing explainable anomaly analysis.
🔹 Publication Date: Published on Nov 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2511.07299
• PDF: https://arxiv.org/pdf/2511.07299
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#LLM #VideoAnalytics #AnomalyDetection #Causality #ExplainableAI
✨Transformer Explainer: Interactive Learning of Text-Generative Models
📝 Summary:
Transformer Explainer is an interactive web tool for non-experts to understand the GPT-2 model. It allows real-time experimentation with user input, visualizing how internal components predict text. This broadens access to education about modern generative AI.
🔹 Publication Date: Published on Aug 8, 2024
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2408.04619
• PDF: https://arxiv.org/pdf/2408.04619
• Project Page: https://poloclub.github.io/transformer-explainer/
• Github: https://github.com/helblazer811/ManimML
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#AI #GenerativeAI #Transformers #AIeducation #ExplainableAI
📝 Summary:
Transformer Explainer is an interactive web tool for non-experts to understand the GPT-2 model. It allows real-time experimentation with user input, visualizing how internal components predict text. This broadens access to education about modern generative AI.
🔹 Publication Date: Published on Aug 8, 2024
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2408.04619
• PDF: https://arxiv.org/pdf/2408.04619
• Project Page: https://poloclub.github.io/transformer-explainer/
• Github: https://github.com/helblazer811/ManimML
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#AI #GenerativeAI #Transformers #AIeducation #ExplainableAI
❤🔥1👍1