Data Science | Machine Learning with Python for Researchers
32.5K subscribers
2.99K photos
104 videos
22 files
3.21K links
ads: @HusseinSheikho

The Data Science and Python channel is for researchers and advanced programmers

Buy ads: https://telega.io/c/dataScienceT
Download Telegram
πŸ“š Become a professional data scientist with these 17 resources!



1️⃣ Python libraries for machine learning

◀️ Introducing the best Python tools and packages for building ML models.

βž–βž–βž–

2️⃣ Deep Learning Interactive Book

◀️ Learn deep learning concepts by combining text, math, code, and images.

βž–βž–βž–

3️⃣ Anthology of Data Science Learning Resources

◀️ The best courses, books, and tools for learning data science.

βž–βž–βž–

4️⃣ Implementing algorithms from scratch

◀️ Coding popular ML algorithms from scratch

βž–βž–βž–

5️⃣ Machine Learning Interview Guide

◀️ Fully prepared for job interviews

βž–βž–βž–

6️⃣ Real-world machine learning projects

◀️ Learning how to build and deploy models.

βž–βž–βž–

7️⃣ Designing machine learning systems

◀️ How to design a scalable and stable ML system.

βž–βž–βž–

8️⃣ Machine Learning Mathematics

◀️ Basic mathematical concepts necessary to understand machine learning.

βž–βž–βž–

9️⃣ Introduction to Statistical Learning

◀️ Learn algorithms with practical examples.

βž–βž–βž–

1️⃣ Machine learning with a probabilistic approach

◀️ Better understanding modeling and uncertainty with a statistical perspective.

βž–βž–βž–

1️⃣ UBC Machine Learning

◀️ Deep understanding of machine learning concepts with conceptual teaching from one of the leading professors in the field of ML,

βž–βž–βž–

1️⃣ Deep Learning with Andrew Ng

◀️ A strong start in the world of neural networks, CNNs and RNNs.

βž–βž–βž–

1️⃣ Linear Algebra with 3Blue1Brown

◀️ Intuitive and visual teaching of linear algebra concepts.

βž–βž–βž–

πŸ”΄ Machine Learning Course

◀️ A combination of theory and practical training to strengthen ML skills.

βž–βž–βž–

1️⃣ Mathematical Optimization with Python

◀️ You will learn the basic concepts of optimization with Python code.

βž–βž–βž–

1️⃣ Explainable models in machine learning

◀️ Making complex models understandable.

βž–βž–βž–

⚫️ Data Analysis with Python

◀️ Data analysis skills using Pandas and NumPy libraries.


#DataScience #MachineLearning #DeepLearning #Python #AI #MLProjects #DataAnalysis #ExplainableAI #100DaysOfCode #TechEducation #MLInterviewPrep #NeuralNetworks #MathForML #Statistics #Coding #AIForEveryone #PythonForDataScience



⚑️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘10❀2
πŸ€–πŸ§  PyMuPDF: The Ultimate Python Library for High-Performance PDF Processing

πŸ—“οΈ 09 Oct 2025
πŸ“š AI News & Trends

If you’re a Python developer working with PDF documents whether it’s for text extraction, data analysis conversion or annotation then you’ve likely encountered the limitations of traditional tools. That’s where PyMuPDF also known as fitz, shines. It’s a lightweight, high-performance Python library that enables comprehensive PDF manipulation with minimal dependencies and maximum flexibility. In this ...

#PyMuPDF #PythonLibrary #PDFProcessing #TextExtraction #DataAnalysis #HighPerformance
πŸ€–πŸ§  PandasAI: Transforming Data Analysis with Conversational Artificial Intelligence

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In a world dominated by data, the ability to analyze and interpret information efficiently has become a core competitive advantage. From business intelligence dashboards to large-scale machine learning models, data-driven decision-making fuels innovation across industries. Yet, for most people, data analysis remains a technical challenge requiring coding expertise, statistical knowledge and familiarity with libraries like ...

#PandasAI #ConversationalAI #DataAnalysis #ArtificialIntelligence #DataScience #MachineLearning
Top 100 Data Analyst Interview Questions & Answers

#DataAnalysis #InterviewQuestions #SQL #Python #Statistics #CaseStudy #DataScience

Part 1: SQL Questions (Q1-30)

#1. What is the difference between DELETE, TRUNCATE, and DROP?
A:
β€’ DELETE is a DML command that removes rows from a table based on a WHERE clause. It is slower as it logs each row deletion and can be rolled back.
β€’ TRUNCATE is a DDL command that quickly removes all rows from a table. It is faster, cannot be rolled back, and resets table identity.
β€’ DROP is a DDL command that removes the entire table, including its structure, data, and indexes.

#2. Select all unique departments from the employees table.
A: Use the DISTINCT keyword.

SELECT DISTINCT department
FROM employees;


#3. Find the top 5 highest-paid employees.
A: Use ORDER BY and LIMIT.

SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;


#4. What is the difference between WHERE and HAVING?
A:
β€’ WHERE is used to filter records before any groupings are made (i.e., it operates on individual rows).
β€’ HAVING is used to filter groups after aggregations (GROUP BY) have been performed.

-- Find departments with more than 10 employees
SELECT department, COUNT(employee_id)
FROM employees
GROUP BY department
HAVING COUNT(employee_id) > 10;


#5. What are the different types of SQL joins?
A:
β€’ (INNER) JOIN: Returns records that have matching values in both tables.
β€’ LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from the right table.
β€’ RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched records from the left table.
β€’ FULL (OUTER) JOIN: Returns all records when there is a match in either the left or right table.
β€’ SELF JOIN: A regular join, but the table is joined with itself.

#6. Write a query to find the second-highest salary.
A: Use OFFSET or a subquery.

-- Method 1: Using OFFSET
SELECT salary
FROM employees
ORDER BY salary DESC
LIMIT 1 OFFSET 1;

-- Method 2: Using a Subquery
SELECT MAX(salary)
FROM employees
WHERE salary < (SELECT MAX(salary) FROM employees);


#7. Find duplicate emails in a customers table.
A: Group by the email column and use HAVING to find groups with a count greater than 1.

SELECT email, COUNT(email)
FROM customers
GROUP BY email
HAVING COUNT(email) > 1;


#8. What is a primary key vs. a foreign key?
A:
β€’ A Primary Key is a constraint that uniquely identifies each record in a table. It must contain unique values and cannot contain NULL values.
β€’ A Foreign Key is a key used to link two tables together. It is a field (or collection of fields) in one table that refers to the Primary Key in another table.

#9. Explain Window Functions. Give an example.
A: Window functions perform a calculation across a set of table rows that are somehow related to the current row. Unlike aggregate functions, they do not collapse rows.

-- Rank employees by salary within each department
SELECT
name,
department,
salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) as dept_rank
FROM employees;


#10. What is a CTE (Common Table Expression)?
A: A CTE is a temporary, named result set that you can reference within a SELECT, INSERT, UPDATE, or DELETE statement. It helps improve readability and break down complex queries.
❀1