This media is not supported in your browser
VIEW IN TELEGRAM
🔨 Резонанс камертонов
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент.
💫 Physics.Math.Code
#gif #механика #физика #physics #опыты #резонанс
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент.
💫 Physics.Math.Code
#gif #механика #физика #physics #опыты #резонанс
👍67❤3🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Звуковой резонанс — это явление увеличения амплитуды вынужденных колебаний, если частота вынуждающей силы совпадает с собственной частотой колебательной системы.
Для объяснения резонанса используется специальный прибор, который используется в музыке — камертон.
Камертон вызывает в резонаторном ящике колебание самой деки ящика и воздуха внутри него. Колебания складываются и усиливают звук. При этом выполняется закон сохранения энергии, то есть с резонаторным ящиком камертон звучит меньше по времени, но сильнее.
Если взять точно такой же (имеющий точно такую же звуковую частоту) второй камертон, то должен возникнуть резонанс: частоты совпадут, произойдёт увеличение амплитуды.
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
Для объяснения резонанса используется специальный прибор, который используется в музыке — камертон.
Камертон вызывает в резонаторном ящике колебание самой деки ящика и воздуха внутри него. Колебания складываются и усиливают звук. При этом выполняется закон сохранения энергии, то есть с резонаторным ящиком камертон звучит меньше по времени, но сильнее.
Если взять точно такой же (имеющий точно такую же звуковую частоту) второй камертон, то должен возникнуть резонанс: частоты совпадут, произойдёт увеличение амплитуды.
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
👍63🔥12❤9😎2✍1
This media is not supported in your browser
VIEW IN TELEGRAM
🌀 Резонанс: частот имеет значение
Резонанс (фр. résonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при приближении частоты внешнего воздействия к определённым значениям, характерным для данной системы. Эти значения называют собственными частотами; в простых случаях такая частота одна, но может быть и несколько.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в определённые моменты времени в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:
где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
Резонанс (фр. résonance, от лат. resono «откликаюсь») — частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при приближении частоты внешнего воздействия к определённым значениям, характерным для данной системы. Эти значения называют собственными частотами; в простых случаях такая частота одна, но может быть и несколько.
Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если подталкивать качели в определённые моменты времени в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния можно найти по формуле:
f = (1/2𝝅)√(g/L)
где g — это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна и включает эллиптический интеграл.) Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).
#физика #опыты #эксперименты #наука #science #physics #механика #волны #видеоуроки #резонанс
💡 Physics.Math.Code // @physics_lib
👍126❤19🔥15🤯6🤩4🤔2❤🔥1
Media is too big
VIEW IN TELEGRAM
🧲 Магнитный двигатель — это тип вечного двигателя, который предназначен для создания вращения с помощью постоянных магнитов в статоре и роторе без внешнего источника энергии. Такой двигатель теоретически и практически нереализуем. Магнитные двигатели не следует путать с обычно используемыми двигателями с постоянными магнитами , которые питаются от внешнего источника электроэнергии.
Гипотетический магнитный двигатель работает с постоянными магнитами в статоре и роторе. Благодаря особому расположению притягивающих и отталкивающих полюсов вращательное движение ротора предположительно поддерживается постоянно. Практические реализации терпят неудачу, поскольку в магнитах нет существенной энергии, которую можно было бы использовать для движения или компенсации потерь энергии. Сила между постоянными магнитами консервативна , поскольку магнитное поле следует за потенциалом , так что работа не выполняется в течение замкнутого цикла. Через короткий промежуток времени такой двигатель прекратит движение и примет положение равновесия.
Рационализации сторонников относительно природы источника энергии различаются. Некоторые спорят только с магнитной силой, оставляя вопросы сохранения энергии в стороне. Некоторые утверждают, что постоянные магниты содержат запасенную магнитную энергию , которая будет потребляться двигателем. Такая существующая энергия ограничена энергией, затраченной при производстве магнита, которая довольно мала. Кроме того, это привело бы к быстрому уменьшению намагниченности с течением времени, чего не наблюдается. Другие рационализации включают ссылки на так называемую свободную энергию и энергию нулевой точки , не объясняя, как эти энергии высвобождаются. Другие утверждают, что их двигатели могли бы, возможно, преобразовывать тепловую энергию из окружающей среды в механическое движение ( вечный двигатель второго рода ).
#физика #наука #science #physics #магниты #резонанс #опыты #эксперименты #видеоуроки #магнетизм
💡 Physics.Math.Code // @physics_lib
Гипотетический магнитный двигатель работает с постоянными магнитами в статоре и роторе. Благодаря особому расположению притягивающих и отталкивающих полюсов вращательное движение ротора предположительно поддерживается постоянно. Практические реализации терпят неудачу, поскольку в магнитах нет существенной энергии, которую можно было бы использовать для движения или компенсации потерь энергии. Сила между постоянными магнитами консервативна , поскольку магнитное поле следует за потенциалом , так что работа не выполняется в течение замкнутого цикла. Через короткий промежуток времени такой двигатель прекратит движение и примет положение равновесия.
Рационализации сторонников относительно природы источника энергии различаются. Некоторые спорят только с магнитной силой, оставляя вопросы сохранения энергии в стороне. Некоторые утверждают, что постоянные магниты содержат запасенную магнитную энергию , которая будет потребляться двигателем. Такая существующая энергия ограничена энергией, затраченной при производстве магнита, которая довольно мала. Кроме того, это привело бы к быстрому уменьшению намагниченности с течением времени, чего не наблюдается. Другие рационализации включают ссылки на так называемую свободную энергию и энергию нулевой точки , не объясняя, как эти энергии высвобождаются. Другие утверждают, что их двигатели могли бы, возможно, преобразовывать тепловую энергию из окружающей среды в механическое движение ( вечный двигатель второго рода ).
#физика #наука #science #physics #магниты #резонанс #опыты #эксперименты #видеоуроки #магнетизм
💡 Physics.Math.Code // @physics_lib
👍98⚡10🤔9❤8🆒5❤🔥4👏3🗿3💯1