Physics.Math.Code
139K subscribers
5.14K photos
1.9K videos
5.78K files
4.28K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Копировально-фрезерные станки
═════════════════
vk.com/wall-51126445_26868
═════════════════
#научные_фильмы #автоматизация
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

💾 Скачать книгу

Обработка нечёткой информации — процесс, при котором системы работают с данными, которые не имеют чёткого значения, но могут быть представлены в виде нечётких множеств или лингвистических переменных. Для обработки такой информации используются методы на основе нечёткой логики — формы многозначной логики, производной от теории нечётких множеств.

Обработка нечёткой информации включает несколько этапов, которые называются процессом нечёткого вывода:
1. Фаззификация — преобразование входных данных в значения лингвистических переменных.
2. Нечёткий вывод — применение процедур на множестве продукционных правил для формирования выходных лингвистических значений.
3. Дефаззификация — преобразование выведенных значений в точные значения для действий или решений.

Некоторые методы обработки нечёткой информации:
▪️На основе алгоритмов нечёткого вывода. Например, механизм Мамдани, который включает фаззификацию, нечётный вывод, композицию и дефаззификацию.
▪️С использованием функций принадлежности. Они количественно определяют степень принадлежности элемента к нечётному множеству и могут принимать различные формы (линейная, экспоненциальная, гауссова).
▪️С применением интервального анализа. Позволяет работать с величинами, для которых задан лишь интервал допустимых или возможных значений.
#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
👍51❤‍🔥12🔥75🤯4🫡1
Обработка_нечеткой_информации_в_системах_принятия_решений_1989_Борисов.djvu
13.3 MB
📙 Обработка нечеткой информации в системах принятия решений [1989] Борисов, Алексеев

Монография посвящена вопросам обработки нечеткой информации в системах принятия решений, создаваемых на базе универсальных ЭВМ. Данные системы применяются при управлении технологическими объектами, в САПР, технической диагностике и разрабатываются как составная часть экспертных систем. Одним из источников информации в таких системах являются специалисты, выражающие свои знания с помощью нечетких понятий и отношений естественного языка.Описываются теоретические принципы, методы и прикладные алгоритмы анализа решений в условиях риска и нечеткой исходной информации на основе лингвистического подхода. Излагаются основные элементы нечеткой математики в моделях принятия решений. Особое внимание уделяется применению аксиоматической теории полезности. Предлагаются методы формирования лингвистических лотерей, позволяющие обосновать правила вычисления и упорядочения лингвистических оценок ожидаемой полезности альтернатив.Рассматриваются методы оценивания полезности в условиях нечеткой информации. Приводятся модели принятия решений на основе безусловных и условных нечетких свидетельств. Применение нечетких свидетельств для описания информации лица, принимающего решения, позволяет оценивать ее качество и производить коррекцию.Описывается программное обеспечение обработки нечеткой информации в системах принятия решений. Приводятся примеры решения организационно-технических задач при нечеткой исходной информации.Для научных работников — специалистов в области систем автоматизированного проектирования, автоматизации управления, принятия решений, экспертных систем.

Обработка нечёткой информации применяется в различных областях, например:

▪️Системы управления. Контроллеры с нечёткой логикой определяют оптимальные точки переключения передач на основе скорости, положения дроссельной заслонки и других факторов.
▪️Экспертные системы. Используют нечёткую логику для имитации способностей человека-эксперта к принятию решений. Например, системы медицинской диагностики оценивают симптомы и результаты анализов, предоставляя диагноз, учитывающий неопределённость состояния здоровья.
▪️Обработка изображений. Нечёткая логика помогает определить границы, уменьшить шум и улучшить качество изображения, учитывая неоднозначность данных.
▪️Системы поддержки принятия решений. Принимают обоснованные решения на основе неполной или неопределённой информации, например, оценивают риск и доходность вариантов инвестирования в неопределённых рыночных условиях.

#физика #автоматизация #нечеткая_логика #математика #алгоритмы #искусственный_интеллект #math #science #AI #наука

💡 Physics.Math.Code // @physics_lib
👍56🔥156🤝3👻2