Machine learning Interview
42.5K subscribers
1.25K photos
95 videos
13 files
846 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
⚡️ Новый HunyuanImage-2.1 — мощный генератор 2K изображений от Tencent

В Hugging Face появился свежий Spacetencent/HunyuanImage-2.1, где можно тестировать новейшую текст-в-изображение модель от Tencent.

Что это за модель?
HunyuanImage-2.1 — это эффективная текст-в-изображение модель, способная генерировать изображения в разрешении 2K (2048×2048) с отличной семантической связью и качеством. Основана на двухступенчатом пайплайне:
1. Базовая модель с двумя энкодерами текста (мультимодальный LLM и ByT5) и 17 млрд параметров, усиленная RLHF.
2. Refiner-модель улучшает детализацию и устраняет артефакты.

Также имеются:
- PromptEnhancer — автоматически улучшает ввод для более точных и выразительных изображений.
- Meanflow-дистилляция — ускоряет инференс с минимальным числом шагов.

Почему это интересно?
- Обеспечивает качественную генерацию семантически точных и визуально выразительных изображений. Модель демонстрирует сравнимый или лучший результат по сравнению с открытыми и закрытыми аналогами в оценках SSAE и GSB :contentReference[oaicite:0]{index=0}.
- Работает с мультиязычным вводом (английский и китайский) и поддерживает различные соотношения сторон (1:1, 16:9, 4:3 и др.).
- Бесплатно доступна: вес модели, код и демонстрация прямо в браузере через Hugging Face.

Как попробовать?
Перейдите на Space, введите свой текстовый запрос, и за секунды получите 2K визуализацию.

HunyuanImage-2.1 демонстрирует, как современные модели могут генерировать крупные и точные изображения, оставаясь при этом доступными и удобными в использовании.

Github: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1


#HunyuanImage21 #TextToImage #AI #OpenSource
6🔥6👍5
📢 NVIDIA представила Rubin CPX — GPU с 128 ГБ GDDR7, созданный специально для работы с длинными контекстами в AI-моделях.
Это не игровой ускоритель, а решение для задач, где модели обрабатывают миллионы токенов за раз.

🧩 Суть новинки
Обычный инференс состоит из двух фаз:
- Контекстная (context phase) — модель «переваривает» длинный ввод до появления первого токена. Тут важна мощность вычислений (FLOPs).
- Генерация (generation phase) — модель создаёт токены. Тут решает пропускная способность памяти.

Rubin CPX берёт на себя первую фазу — самую тяжёлую. Обычные Rubin GPU остаются для генерации. Такое разделение делает систему быстрее и эффективнее.

Возможности Rubin CPX
- 30 PFLOPs NVFP4 (новый 4-битный формат NVIDIA для инференса).
- 128 ГБ GDDR7 памяти.
- 3× ускоренное внимание (attention) по сравнению с GB300 NVL72.
- Встроенные блоки для кодирования/декодирования видео.
- Оптимизация под длинные последовательности и быструю подготовку токенов.

🖥️ Система Vera Rubin NVL144 CPX
- 144 Rubin CPX + 144 Rubin GPU + 36 Vera CPU.
- До 8 экзаFLOPs NVFP4.
- 100 ТБ памяти и 1,7 ПБ/с пропускной способности.
- В 7,5 раза быстрее, чем предыдущее поколение GB300 NVL72.
- Сеть: Quantum-X800 InfiniBand или Spectrum-X Ethernet для быстрой передачи KV-кэша.

🔑 Главное
Rubin CPX — это GPU нового типа, сфокусированный на длинных вводах.
Он снимает «бутылочное горлышко» при работе с миллионами токенов и позволяет системам работать быстрее и дешевле.

🚀 Вывод
Rubin CPX и NVL144 CPX-rack открывают дорогу к действительно масштабным моделям-агентам и длинноконтекстным LLM.
Это шаг от универсальных GPU к специализированным решениям под конкретные фазы инференса.
4🔥4🥰2👍1