📚 9 AI-гайдов от OpenAI, Google и Anthropic
🚀 Всё — про агентов, промпты, бизнес и реальные use-case’ы. Сохрани себе!
1. AI в бизнесе (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf
2. Практика: как строить агентов (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
3. Prompting 101 (Google)
📄 https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
4. Как масштабировать AI use-case’ы (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
5. Building Effective Agents (Anthropic)
🔗 https://www.anthropic.com/engineering/building-effective-agents
6. Prompt Engineering (Anthropic)
🔗 https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
7. Agents Companion (whitepaper)
📄 https://kaggle.com/whitepaper-agent-companion
8. 601 AI Use Cases (Google)
📄 https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
9. Prompt Engineering от Google
📄 https://kaggle.com/whitepaper-prompt-engineering
Лучшие практики от лидеров индустрии.
🚀 Всё — про агентов, промпты, бизнес и реальные use-case’ы. Сохрани себе!
1. AI в бизнесе (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/ai-in-the-enterprise.pdf
2. Практика: как строить агентов (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
3. Prompting 101 (Google)
📄 https://services.google.com/fh/files/misc/gemini-for-google-workspace-prompting-guide-101.pdf
4. Как масштабировать AI use-case’ы (OpenAI)
📄 https://cdn.openai.com/business-guides-and-resources/identifying-and-scaling-ai-use-cases.pdf
5. Building Effective Agents (Anthropic)
🔗 https://www.anthropic.com/engineering/building-effective-agents
6. Prompt Engineering (Anthropic)
🔗 https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
7. Agents Companion (whitepaper)
📄 https://kaggle.com/whitepaper-agent-companion
8. 601 AI Use Cases (Google)
📄 https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
9. Prompt Engineering от Google
📄 https://kaggle.com/whitepaper-prompt-engineering
Лучшие практики от лидеров индустрии.
🤖 Почему модели лучше отвечают на вопросы по тексту, чем по изображениям — и как это исправить?
Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇
🔬 Они разделили вход на три части:
• Данные (изображение или текст),
• Вопрос (*how many…*),
• Ответ (предсказание последнего слова).
🧠 Что нашли:
1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.
2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.
3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.
4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.
💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.
📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!
🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.
🔜 Читать статью полностью
@machinelearning_interview
Vision-Language модели (VLMs) сильно хуже справляются с вопросами про картинки (*«Сколько книг на изображении?»*), чем с теми же вопросами по тексту (*«Сколько книг в описании?»*). И нашли способ улучшить результат на +4.6%, закрыв треть разрыва между модальностями! Вот что они сделали 👇
🔬 Они разделили вход на три части:
• Данные (изображение или текст),
• Вопрос (*how many…*),
• Ответ (предсказание последнего слова).
🧠 Что нашли:
1️⃣ Мозги у модели разные для текста и картинок — цепочки внимания и нейроны почти не совпадают (всего ~18%). Особенно в частях, где обрабатываются данные и вопрос.
2️⃣ Часть, отвечающая за генерацию ответа, похожа — можно даже подменить её между модальностями, и модель почти не теряет в точности.
3️⃣ Часть, которая "смотрит" на данные — строго модальная. Визуальный поток информации идёт по другому пути, и замена разрушает результат.
4️⃣ Проблема в том, что изображение “становится понятным” слишком поздно. В поздних слоях визуальные данные уже похожи на текстовые — но модель не успевает этим воспользоваться.
💡 Решение: "перемотать" визуальные данные из поздних слоёв обратно в ранние (back-patching) — это помогает модели раньше "понять" картинку.
📈 Результат: +4.6% точности при ответах на вопросы по изображению — и треть разрыва с текстом закрыта!
🧩 Вывод: архитектура не виновата. Просто визуальные данные нужно правильно "подать" — и VLM начинает думать почти как человек.
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
По аналогии с автосалонами, робототехнический 4S будет предлагать полный цикл: продажи (Sales), сервис (Service), запчасти (Spare parts) и консультации/анализ (Surveys). Планируется зона с демонстрацией роботов в реалистичных сценариях – можно будет всё пощупать руками и увидеть их возможности в деле. Плюс создадут быструю сеть поставки комплектующих по стране и соберут профильную команду для сборки, ремонта и обслуживания машин.
Первыми партнерами станут несколько лидеров сферы: UBTECH и Galaxea. Откроется центр в августе на базе промпарка в районе Ичжуан на юге столицы.
english.news.cn
The Browser Company открыл доступ к бета-версии браузера Dia (по инвайтам). Dia позиционируется как решение, где ИИ глубоко интегрирован в самую суть взаимодействия, он встроен прямо в рабочий процесс пользователя, избавляя от необходимости постоянно ходить на сайты ChatGPT или Claude.
Dia построен на Chromium, так что интерфейс многим знаком. Главная фича — умная адресная строка: она работает и как поиск, и как чат-бот с ИИ. Помощник умеет искать в сети, суммировать загруженные файлы, автоматически переключаться между режимами. Можно даже спросить его о содержимом всех открытых вкладок или попросить составить черновик на их основе.
Настройки производятся через диалог с ботом: можно задать тон, стиль письма, параметры для кода. Опция History (по желанию) позволяет браузеру использовать недельную историю просмотров как контекст для ответов. А функция Skills помогает создавать мини-скрипты — ярлыки для сложных настроек или действий.
techcrunch.com
Mistral AI анонсировала Mistral Compute - инфраструктурную платформу для разработки и запуска ИИ. Это полноценный приватный стек: от GPU и систем оркестрации до API и сервисов. На выбор любой формат, от bare-metal до полностью управляемой PaaS.
Mistral Compute нацелен дать государствам, компаниям и научным центрам, ищущих альтернативу решениям из США или Китая, возможность самим строить ИИ-среду под свои нужды и полностью ею владеть.
Платформа использует новейшие архитектуры NVIDIA, с доступом к десяткам тысяч GPU. Она создана командой с огромным опытом в HPC и обучении топовых ИИ-моделей. Ключевые акценты: устойчивость и суверенитет данных, инфраструктура соответствует строгим европейским нормам и работает на декарбонизированной энергии.
mistral.ai
Seedance 1.0 - новая генеративная модель для создания видео, которая, по утверждениям ByteDance, превосходит конкурентов в точности выполнения запросов, качестве движений и резкости изображения. В тестах на Artificial Analysis она лидирует в задачах text-to-video и image-to-video, обходя Google Veo 3, Kuaishou Kling 2.0 и OpenAI Sora. Модель справляется с длинными сценами, сохраняя стабильность персонажей и переходов между ракурсами, но пока не поддерживает добавление звука.
Seedance 1.0 генерирует 5-секундный Full HD-ролик за 41 секунду — это быстрее аналогов, хотя новый Google Veo 3 Fast может нивелировать это преимущество. Инструмент планируют внедрить в платформы Doubao и Jimeng. Целевая аудитория — от профессиональных видеомейкеров до обычных пользователей.
seed.bytedance.com
Midjourney объявила о начале открытого тестирования модели генерации видео по текстовым запросам. Задача тестирования собрать обратную связь для улучшения алгоритма.
Создатели пригласили сообщество принять участие в онлайн-рейтинге сгенерированных роликов, присоединиться можно по ссылке. Пока некоторые образцы выглядят достойно и сохраняют фирменный стиль Midjourney, но в целом результаты пока нестабильны.
Компания подчеркивает: это не финальная версия модели, а лишь первый шаг. Дополнительные сессии тестирования уже запланированы, но дату релиза и цену пока не раскрывают.
midjourney.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Успех в IT = скорость + знания + окружение
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_ci
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat
💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy
Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
🧠 Anthropic представила мультиагентную систему для Claude
В новой функции Research агент‑координатор (LeadResearcher) создаёт субагентов, которые параллельно ищут, анализируют и структурируют информацию. Это мощный шаг к превращению LLM в полноценный исследовательский инструмент.
📌 Почему это важно:
• Субагенты работают независимо и параллельно
• Каждый из них имеет свой контекст и специализацию
• Главный агент объединяет результаты и выдаёт финальный отчёт
• CitationAgent добавляет корректные ссылки
📊 Результат:
Внутренние тесты показали: Claude с мультиагентной системой превзошёл одиночную модель на +90 % при анализе компаний S&P 500.
💡 Модель теперь не просто отвечает — она планирует, координирует и исследует.
⚠️ Минусы:
• в 4× больше токенов
• в 15× дороже
• не годится для задач с общей памятью (например, программирование)
🔍 Но если нужно глубокое исследование — Claude Research действительно экономит часы и дни человеческой работы.
📌 Читать
В новой функции Research агент‑координатор (LeadResearcher) создаёт субагентов, которые параллельно ищут, анализируют и структурируют информацию. Это мощный шаг к превращению LLM в полноценный исследовательский инструмент.
📌 Почему это важно:
• Субагенты работают независимо и параллельно
• Каждый из них имеет свой контекст и специализацию
• Главный агент объединяет результаты и выдаёт финальный отчёт
• CitationAgent добавляет корректные ссылки
📊 Результат:
Внутренние тесты показали: Claude с мультиагентной системой превзошёл одиночную модель на +90 % при анализе компаний S&P 500.
💡 Модель теперь не просто отвечает — она планирует, координирует и исследует.
⚠️ Минусы:
• в 4× больше токенов
• в 15× дороже
• не годится для задач с общей памятью (например, программирование)
🔍 Но если нужно глубокое исследование — Claude Research действительно экономит часы и дни человеческой работы.
📌 Читать
Forwarded from Machinelearning
SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.
SEAL, по сути, это два разделенных цикла:
Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.
SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.
Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.
В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.
Метод скорее академический и по большей части экспериментальный, у него есть ограничения:
@ai_machinelearning_big_data
#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Вышли модели Qwen3 в формате MLX!
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
В эпоху бума нейросетей неудивительно, что в топ высокооплачиваемых профессий, по версии «Хабра», попали ML-инженеры, дата-сайентисты и аналитики.
Освойте одну из топовых специальностей и станьте тем, за кем охотятся компании, в онлайн-магистратуре «Прикладной анализ данных и машинное обучение» от Skillfactory и МИФИ.
Это привычная магистратура со всеми льготами очных студентов (отсрочка от армии, студенческий билет, обучение 198 р/месяц при господдержке), только учиться будете онлайн в удобное время.
Программа рассчитана на два года. За это время вы получите фундаментальные знания с фокусом на практику от преподавателей МИФИ и экспертов из крупных компаний. Погрузитесь в Data Science и Machine Learning и выберете направление — ML или MLOps. Финальной точкой станет диплом государственного образца одного из лучших университетов России как подтверждение вашей квалификации.
Чтобы поступить, нужен диплом о высшем образовании или студенческий билет последних курсов вуза. Вступительные — мотивационное письмо и экзамен с общими и профильными вопросами.
Набор в магистратуру уже идет. Количество мест ограничено. Оставляйте заявку по ссылке
Реклама. ООО "СКИЛФЭКТОРИ". ИНН 9702009530. erid: 2W5zFJbeKJQ
Освойте одну из топовых специальностей и станьте тем, за кем охотятся компании, в онлайн-магистратуре «Прикладной анализ данных и машинное обучение» от Skillfactory и МИФИ.
Это привычная магистратура со всеми льготами очных студентов (отсрочка от армии, студенческий билет, обучение 198 р/месяц при господдержке), только учиться будете онлайн в удобное время.
Программа рассчитана на два года. За это время вы получите фундаментальные знания с фокусом на практику от преподавателей МИФИ и экспертов из крупных компаний. Погрузитесь в Data Science и Machine Learning и выберете направление — ML или MLOps. Финальной точкой станет диплом государственного образца одного из лучших университетов России как подтверждение вашей квалификации.
Чтобы поступить, нужен диплом о высшем образовании или студенческий билет последних курсов вуза. Вступительные — мотивационное письмо и экзамен с общими и профильными вопросами.
Набор в магистратуру уже идет. Количество мест ограничено. Оставляйте заявку по ссылке
Реклама. ООО "СКИЛФЭКТОРИ". ИНН 9702009530. erid: 2W5zFJbeKJQ
🧠 Модели обучают сами себя: Anthropic представила метод ICM
Исследователи из Anthropic разработали новый подход — Internal Coherence Maximization (ICM), позволяющий языковым моделям тонко настраивать себя без участия человека.
🔍 Как работает:
Модель оценивает последовательность своих ответов, находит противоречия и улучшает собственные ответы путём самокоррекции.
Это позволяет добиться более логичных и целостных рассуждений — без аннотаций и ручной разметки.
📊 Результаты:
• На бенчмарках *TruthfulQA* и *GSM8K* ICM показывает не хуже, а иногда даже лучше, чем классическое супервизированное дообучение
• В субъективных оценках "полезности" — модели с ICM воспринимаются убедительнее
• ICM также может генерировать мощные reward-модели для RLHF
⚠️ Ограничения:
• Сложности с новыми концепциями
• Неустойчивость на очень длинных текстах
📌 Вывод:
ICM — это шаг к более автономному и последовательному ИИ, который учится рассуждать, проверять и улучшать себя сам. Без учителя.
📌 Подробнее
Исследователи из Anthropic разработали новый подход — Internal Coherence Maximization (ICM), позволяющий языковым моделям тонко настраивать себя без участия человека.
🔍 Как работает:
Модель оценивает последовательность своих ответов, находит противоречия и улучшает собственные ответы путём самокоррекции.
Это позволяет добиться более логичных и целостных рассуждений — без аннотаций и ручной разметки.
📊 Результаты:
• На бенчмарках *TruthfulQA* и *GSM8K* ICM показывает не хуже, а иногда даже лучше, чем классическое супервизированное дообучение
• В субъективных оценках "полезности" — модели с ICM воспринимаются убедительнее
• ICM также может генерировать мощные reward-модели для RLHF
⚠️ Ограничения:
• Сложности с новыми концепциями
• Неустойчивость на очень длинных текстах
📌 Вывод:
ICM — это шаг к более автономному и последовательному ИИ, который учится рассуждать, проверять и улучшать себя сам. Без учителя.
📌 Подробнее
Forwarded from Machinelearning
MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning
Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)
SWE-bench Verified: 56.0 vs 34.4 (Qwen3)
OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)
TAU-bench (airline): 62.0 vs 34.7 (Qwen3)
LongBench-v2: 61.5 vs 50.1 (Qwen3)
▪Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
▪GitHub: https://github.com/MiniMax-AI/MiniMax-M1
▪Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf
@ai_machinelearning_big_data
#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Moonshot AI выпускает Kimi Dev 72B — новую открытую модель для кодинга и софт-инжиниринга!
▪️ Результат 60.4% на SWE Bench Verified — новый рекорд среди open-source моделей
▪️ Обходит GPT-4.1 и уступает только Gemini 2.5 Pro
▪️ Уже доступна на Hugging Face и GitHub
Kimi Dev 72B — свежий прорыв для разработчиков, ищущих мощную и открытую LLM для Кодина!
- GitHub: https://github.com/MoonshotAI/Kimi-Dev
- HuggingFace: https://huggingface.co/moonshotai/Kimi-Dev-72B
▪️ Результат 60.4% на SWE Bench Verified — новый рекорд среди open-source моделей
▪️ Обходит GPT-4.1 и уступает только Gemini 2.5 Pro
▪️ Уже доступна на Hugging Face и GitHub
Kimi Dev 72B — свежий прорыв для разработчиков, ищущих мощную и открытую LLM для Кодина!
- GitHub: https://github.com/MoonshotAI/Kimi-Dev
- HuggingFace: https://huggingface.co/moonshotai/Kimi-Dev-72B