Forwarded from Machinelearning
Unsloth представил практический метод динамического 4-битного квантования VLM, который решает проблему снижения точности популярных алгоритмов квантования AWQ, Bitsandbytes, GPTQ и HQQ.
В эксперименте использовался Bitsandbytes в качестве основы для всех линейных слоев, но квантование определенных параметров было динамически отключено. Этот подход позволил добиться значительного повышения точности при использовании всего на 10% больше VRAM по сравнению с стандартным 4-битным квантованием Bitsandbytes.
В результате, этот метод позволяет сохранить точность модели, близкую к 16-битной точности, при значительном сокращении размера модели.
Тестирование на VL-моделях Llama 3.2 Vision, Qwen2 Vision и Pixtral, показали значительные преимущества по сравнению со стандартным 4-битным квантованием. Например, квантование Qwen2 Vision 2B до 4 бит приводило к полной поломке модели, в то время как метод динамического квантования позволял восстановить точность при увеличении использования памяти всего на 450 МБ.
Аналогичным образом, получилось восстановить точность Llama 3.2 Vision 11B и Pixtral 12B, которые также деградировали на стандартном 4-битном квантовании.
⚠️ К каждой модели в Model Card можно найти блокнот для запуска в Google Collab и созданные сообществом GGUF-версии.
@ai_machinelearning_big_data
#AI #ML #VLM #Unsolth #Quantization
Please open Telegram to view this post
VIEW IN TELEGRAM