📚 Библиотека #Excogitator
Несколько дней назад начали тему ИИ в машиностроении: здесь об успехах Leap71. А вчера сами попробовали Text-to-CAD приложения. В завершение темы книга "Математика в машинном обучении", созданная для того, чтобы объединить ключевые математические дисциплины, необходимые для понимания и применения алгоритмов машинного обучения.
Основные математические направления, такие как линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика, традиционно изучаются разрозненно. Это создает трудности для студентов, обучающихся на специальностях data science и computer science, а также для профессионалов в области машинного обучения, которые стремятся интегрировать эти знания в единую концепцию.
📌 Чем уникальна эта книга?
⚙️ Целостный подход: Книга объединяет основные математические концепции в одну самодостаточную программу
⚙️ Последовательность изложения: Переход от базовых понятий к анализу ключевых методов машинного обучения: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов.
⚙️ Развитие интуиции: Подход помогает не только понять теорию, но и развить интуицию в применении математических знаний.
Все разделы математики описанные в книги имеют практическое применение в машинном обучении:
⚙️ Линейная алгебра: Линейная алгебра является основой для работы с большими данными и изображениями. Например, понимание матричных операций позволяет эффективно обрабатывать и сжимать изображения с помощью методов, таких как сингулярное разложение (SVD).
⚙️ Аналитическая геометрия: Геометрические представления данных полезны для визуализации и интерпретации. Например, при помощи аналитической геометрии можно визуализировать данные в 2D или 3D пространстве для кластерного анализа.
⚙️ Векторный анализ: Векторные поля и дифференциальные операторы играют важную роль при обучении нейронных сетей, особенно в части, касающейся распространения ошибки и корректировки весов.
⚙️ Оптимизация: Оптимизационные методы, такие как градиентный спуск и его модификации (Adam, RMSProp), необходимы для минимизации функции потерь во многих алгоритмах машинного обучения, включая глубокие нейронные сети.
⚙️ Теория вероятностей: Вероятностные модели, такие как наивный байесовский классификатор, используются для фильтрации спама в электронных письмах или для классификации текстов по категориям.
⚙️ Статистика: Методы статистического анализа применяются для оценки и валидации моделей. Например, с помощью статистики можно проводить гипотезы и проводить A/B тестирование для выбора лучшей модели.
Каждая из этих математических дисциплин играет ключевую роль в машинном обучении, позволяя разрабатывать и оптимизировать сложные алгоритмы, улучшать точность предсказаний и понимание данных. Книга не только объясняет теорию, но и показывает, как применить знания на практике, что делает её незаменимой для начинающих и профессионалов в области data science.
Книга есть в бумажном варианте во многих интернет магазинах.
Пишите в личку, если нужна ссылка на *.pdf🤫
Проектируй. Созидай. #Excogitator 🦾
#Library@excolab
#МашинноеОбучение #Математика #DataScience #Книги #Саморазвитие #Ai
Несколько дней назад начали тему ИИ в машиностроении: здесь об успехах Leap71. А вчера сами попробовали Text-to-CAD приложения. В завершение темы книга "Математика в машинном обучении", созданная для того, чтобы объединить ключевые математические дисциплины, необходимые для понимания и применения алгоритмов машинного обучения.
Основные математические направления, такие как линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика, традиционно изучаются разрозненно. Это создает трудности для студентов, обучающихся на специальностях data science и computer science, а также для профессионалов в области машинного обучения, которые стремятся интегрировать эти знания в единую концепцию.
Все разделы математики описанные в книги имеют практическое применение в машинном обучении:
Каждая из этих математических дисциплин играет ключевую роль в машинном обучении, позволяя разрабатывать и оптимизировать сложные алгоритмы, улучшать точность предсказаний и понимание данных. Книга не только объясняет теорию, но и показывает, как применить знания на практике, что делает её незаменимой для начинающих и профессионалов в области data science.
Книга есть в бумажном варианте во многих интернет магазинах.
Пишите в личку, если нужна ссылка на *.pdf
Проектируй. Созидай. #Excogitator 🦾
#Library@excolab
#МашинноеОбучение #Математика #DataScience #Книги #Саморазвитие #Ai
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥8❤6👍3