Математика Дата саентиста
13.6K subscribers
410 photos
133 videos
37 files
353 links
Download Telegram
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
☀️ Surya: фундаментальные модели ИИ для гелиофизики и предсказания воздействии солнца на космическое и земное пространство.

NASA и IBM
выпустили в опенсорс Surya Heliophysics Foundational Model — крупномасштабную ИИ-модель, обученную на 14 годах наблюдений космоса спутника Solar Dynamics Observatory (SDO)

🟢 Зачем это нужно:
Солнечные бури влияют на нашу жизнь:
🛰️ могут вывести из строя спутники
✈️ нарушить работу навигации в самолётах
вызвать перебои с электричеством
👨‍🚀 создать радиационную угрозу для астронавтов

Иногда вспышки сопровождаются потоками частиц, которые повреждают электронику и опасны для здоровья.

🟠 Чем интересна Surya:
- Обучена на 14 годах наблюдений за Солнцем
- Позволяет предсказать вспышки на солнце за 2 часа до их
- Показывает точное место на Солнце, где произойдёт вспышка
- Помогает заранее подготовиться авиации, энергетике и связи к возможным проблемам.

🚀 IBM и NASA десятилетиями работали над моделями климата и погоды на Земле. Теперь они перешли к прогнозированию «космической погоды».

HF: https://huggingface.co/nasa-ibm-ai4science
Модели: https://huggingface.co/nasa-ibm-ai4science/models
Датасеты: https://huggingface.co/nasa-ibm-ai4science/datasets

@ai_machinelearning_big_data

#AI4Science #Heliophysics #OpenScience #MachineLearning #NASA #IBM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥2
📌Приглашаем вас на три бесплатных вебинара курса «ML для финансового анализа»

💎Вебинар №1: «Инструменты тестирования торговых стратегий»

27 августа в 20:00 мск

🔹На вебинаре:
- Познакомитесь с инструментами для backtesting’а: от pandas до backtrader и backtesting.
-Узнаете про метрики оценки: доходность, просадка, Sharpe ratio
- Покажем ошибки при тестировании и как их избежать.
- Практика по тестированию простой стратегии и анализу ее метрик.

💎Вебинар №2: «Введение в технический анализ: построение торговой стратегии»

4 сентября в 20:00 мск

🔹На вебинаре:
-Узнаете архитектурное решение локального торгового робота
- Познакомитесь с понятием технического анализа
- Практика с актуальными инструментами
- Построения индикаторов на практике
- Первая стратегия на тех. анализе

💎Вебинар №3: «Работа с торговой площадкой ByBit»

17 сентября в 20:00 мск

🔹На вебинаре:
- Обзор возможностей платформы ByBit: типы ордеров, торговые пары.
- Разбор основных принципов работы с API ByBit: авторизация, получение котировок, выставление ордеров.
- Напишем простой торговый скрипт на Python и протестируем его на демо-аккаунте.

🎁Участники вебинаров получат подарки на почту

Регистрация на вебинары ➡️ OTUS.RU

Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
👍21
This media is not supported in your browser
VIEW IN TELEGRAM
Суммы Римана и интегралы обе преследуют цель вычислить площадь под кривой, но отличаются точностью и методом.
Сумма Римана — это приближение, при котором площадь оценивается как сумма площадей прямоугольников, расположенных под кривой. Ширина каждого прямоугольника определяется разбиением интервала, а высота берётся из значения функции в выбранной точке внутри каждого подинтервала (например, в левой границе, правой границе или середине). При увеличении числа прямоугольников точность приближения возрастает.

Интеграл же представляет собой точное значение площади под кривой и определяется как предел суммы Римана при стремлении числа прямоугольников к бесконечности и их ширины — к нулю.
Иными словами, суммы Римана — это ступени, а определённый интеграл — это конечная цель.
👍189💩3🥰2
Подпространства в ℝ³ за минуту

У линейных подпространств в ℝ³ всего четыре типа — именно их и шутливо показали на меме:

• {0} — только нулевой вектор.
• Прямая через начало: span(d) = { t·d }.
• Плоскость через начало: { p | n·p = 0 } = ker(nᵀ).
• Всё пространство ℝ³.

Как понять, что множество — подпространство:
1) 0 ∈ S
2) Замкнутость по умножению на скаляр: αx ∈ S
3) Замкнутость по сложению: x + y ∈ S

Быстрые примеры:
• z = 0 — подпространство (плоскость через начало).
• z = 1 — уже не подпространство (нет нулевого вектора, нет замкнутости).

Запомнить просто: линейные подпространства всегда проходят через начало координат.
19👍8🥰3🤔1
🌌 Математический мем в стиле «Звёздных войн»

Внизу — маленький Энакин:
зовая основная теорема анализа — интеграл от производной равен приращению функции.

А тень — Дарт Вейдер, то есть «взрослая форма»:

Это обобщённая теорема Стокса, которая объединяет под собой все классические результаты: Ньютона–Лейбница, Грина, Остроградского–Гаусса и Стокса.

⚡️ Смысл мема: основная теорема анализа — лишь маленький частный случай великой теоремы Стокса.
18🔥4👍2👎1
📚 Mathos (ранее MathGPT Pro) — ИИ-репетитор по математике

Mathos — это умная платформа на базе искусственного интеллекта, которая помогает решать задачи по математике: от алгебры до высшей математики. Подходит и школьникам, и студентам, и преподавателям.

Возможности:
- На 20% точнее GPT-4o при решении задач по математике и STEM
- Поддерживает ввод с фото, PDF, голосом, текстом или рисунком
- Пошаговые объяснения + интерактивные графики и аннотации
- Доверие более 1 млн студентов в 200+ странах
- Стартап из акселератора Y Combinator (Winter 2024), офис в Калифорнии

Идеально для самоподготовки, помощи с домашкой, подготовки к экзаменам и для учебных занятий.

https://mathgptpro.com/

#AI #EdTech #Math #Образование
5👍4👎1🔥1🙏1
✔️ NVIDIA и Университет Эссекса провели крупнейшую в истории симуляцию в статистической физике.

Инженеры из Университет Эссекса при поддержке NVIDIA установили новый мировой рекорд в компьютерном моделировании. Эксперимент позволил впервые на практике наблюдать термодинамический предел — ключевое понятие, объясняющее, как свойства материи проявляются в макроскопических системах.

Для симуляции использовалась стоечная архитектура NVIDIA GB200 NVL72, которая позволила смоделировать поведение до 70 триллионов взаимодействующих частиц. Система достигла рекордной производительности почти в 115 000 обновлений решетки в наносекунду.

Результаты исследования, опубликованные в Physical Review Research, могут ускорить разработку новых дисплеев, магнитных материалов и дать более глубокое понимание фундаментальных свойств материи.
essex.ac.uk
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥83👍1
🚨 Новый отчёт от Epoch AI: GPT-5 значительно превосходит GPT-4

Хотя запуск GPT-5 прошёл тише, чем громкий дебют GPT-4, цифры показывают обратное — это снова огромный скачок, как когда-то между GPT-3 и GPT-4.

📊 Рост по ключевым бенчмаркам:
🧠 +67% на HumanEval
📚 +80% на Mock AIME
📈 +75% на продвинутой математике (Level 5 MATH)

Итог: GPT-5 подтверждает тренд — каждое поколение приносит качественный прорыв в возможностях моделей.

https://epoch.ai/data-insights/gpt-capabilities-progress
🔥6💩41🥰1
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

AI: t.iss.one/ai_machinelearning_big_data
Python: t.iss.one/pythonl
Linux: t.iss.one/linuxacademiya
Собеседования DS: t.iss.one/machinelearning_interview
C++ t.iss.one/cpluspluc
Docker: t.iss.one/DevopsDocker
Хакинг: t.iss.one/linuxkalii
Devops: t.iss.one/DevOPSitsec
Data Science: t.iss.one/data_analysis_ml
Javascript: t.iss.one/javascriptv
C#: t.iss.one/csharp_1001_notes
Java: t.iss.one/java_library
Базы данных: t.iss.one/sqlhub
Python собеседования: t.iss.one/python_job_interview
Мобильная разработка: t.iss.one/mobdevelop
Golang: t.iss.one/Golang_google
React: t.iss.one/react_tg
Rust: t.iss.one/rust_code
ИИ: t.iss.one/vistehno
PHP: t.iss.one/phpshka
Android: t.iss.one/android_its
Frontend: t.iss.one/front
Big Data: t.iss.one/bigdatai
МАТЕМАТИКА: t.iss.one/data_math
Kubernets: t.iss.one/kubernetc
Разработка игр: https://t.iss.one/gamedev
Haskell: t.iss.one/haskell_tg
Физика: t.iss.one/fizmat

💼 Папка с вакансиями: t.iss.one/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.iss.one/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.iss.one/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.iss.one/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.iss.one/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.iss.one/memes_prog
🇬🇧Английский: t.iss.one/english_forprogrammers
🧠ИИ: t.iss.one/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.iss.one/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
👍32
🔢 Качество математических данных — ключ к развитию reasoning-моделей.

Но тут есть проблема: лучшие данные скрыты в старых научных статьях, а OCR математики — это настоящий кошмар: куча исключений, форматы, языки.

👉 Даже GPT-5 при распознавании путает F с τ (маленькая правка в символе, но огромная смысловая разница) и ломает форматирование.

Исследования (*deepseek-math, NVIDIA Nemotron*) подтверждают: предобучение на математике критично для улучшения рассуждений LLM. Работа HuggingFace над *smollm* показала, что фильтрация токенов с 34B → 10B только по качеству повысила результативность.

⚠️ Для хорошего математического корпуса OCR должен быть почти 100% точным, справляться с разными языками и макетами страниц.

💡 Обычно используют MathPix — он неплох, но дорогой, медленный и закрытый.
Хорошие новости: за последние месяцы open-source модели обошли MathPix.

Marker уже показывает SoTA на бенчмарке *olmocr* по математике.
Внутренние тесты в tier-1 AI-лаборатории: лучше MathPix.
Минимальные ошибки даже на китайских статьях, где GPT-5 «сдавался».

📌 Репозитории:
- Marker → https://github.com/datalab-to/marker
- Surya → https://github.com/datalab-to/surya

Персонализация и on-prem кастомизация тоже доступны — разработчики открыты к диалогу.

Открытые решения для математического OCR двигаются быстрее, чем кажется.
👍64🔥1