Forwarded from Machinelearning
Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.
Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.
В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.
Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.
Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".
Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.
Результаты тестирования Sana впечатляют:
⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.
# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth
@ai_machinelearning_big_data
#AI #ML #Diffusion #SANA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5🔥4⚡1
Forwarded from Machinelearning
NVIDIA BioNeMo2 Framework - это набор инструментов, библиотек и моделей для вычислительного поиска и разработки лекарственный препаратов.
Он ускоряет самые трудоемкие и дорогостоящие этапы создания и адаптации моделей биомолекулярного ИИ, предоставляя оптимизированные модели и инструменты, которые легко интегрируются в вычислительные ресурсы на базе GPU.
Фреймворк позволяет создавать, обучать и настраивать модели, его возможности охватывают различные рабочие нагрузки и терапевтические механизмы: генерация молекул, предсказание структуры белка, белок-лиганд и обучение представлениям.
Помимо кода пайплайнов, скриптов и утилит, BioNeMo2 Framework содержит:
@ai_machinelearning_big_data
#AI #ML #Framework #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤4🔥4
Только что вышла версия CUDA 12.8 с поддержкой Blackwell.
Гайд по работе с TensorCore 5-го поколения:
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#tensorcore-5th-generation-instructions
#cuda #TensorCore #nvidia
Гайд по работе с TensorCore 5-го поколения:
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#tensorcore-5th-generation-instructions
#cuda #TensorCore #nvidia
🔥5🤣3❤2🥰1
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤6🔥4
Forwarded from Machinelearning
NVIDIA в соавторстве с Arc Institute опубликовали Evo-2, самую большую ИИ-модель для биологии, обученную на 9,3 трлн. пар ДНК из геномного атласа всех форм жизни.
Можно считать, что это LLM, ориентированная на ДНК. Вместо текста Evo 2 генерирует геномные последовательности, читает и интерпретирует сложную ДНК, включая некодирующие регионы, которые обычно считаются неинформативными, генерирует целые хромосомы, новые геномы и предсказывает мутации, вызывающие заболевания, даже те, которые еще не изучены.
Тем самым, можно утверждать, что ИИ переходит от описания биологии к ее проектированию. Это позволяет создавать синтетическую жизнь с нуля, программируемые белковые последовательности, потенциальные новые генные терапии и закладывает основу для моделирования целых клеток. Evo 2 делает биологию вычислительной дисциплиной.
Evo-2 использует StripedHyena 2 - многогибридную модель, сочетающую различные типы операторов для баланса между качеством модели, эффективностью обучения и инференса. StripedHyena 2 опирается на комбинацию из 3 вариантов сверточных операторов, зависящих от входных данных, и механизма внимания. Она моделирует ДНК в нескольких масштабах, улавливая даже слабые взаимодействия, и автономно обучается таким характеристикам, как границы экзонов и интронов, сайты связывания транскрипционных факторов, без участия человека.
Модель была обучена в два этапа (претрейн с контекстом 8192 и последующее обучение с увеличенным до 1 млн.) на датасете из 9,3 триллиона пар оснований бактерий, архей, эукариот и бактериофагов. Evo 2 обрабатывает до 1 млн. пар оснований в одном контекстном окне, умеет "держать в уме" целые хромосомы и может выявлять эволюционные закономерности, ранее не замеченные человеком.
Evo-2 была протестирована на практических возможности генерации, создав синтетические дрожжевые хромосомы, митохондриальные геномы и минимальные бактериальные секвенции и продемонстрировала высокую производительность в задачах, связанных с вариациями генов, включая некодирующие и сплайсинговые варианты
Проект полностью открыт: веса моделей, код и набор данных OpenGenome 2. Представлены два вида моделей:
@ai_machinelearning_big_data
#AI #ML #Evo2 #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16❤5👍5🤔2
Forwarded from Machinelearning
NVIDIA представила новую модель автоматического распознавания речи (ASR) — Parakeet-tdt-0.6b-v2 c 600 млн. параметров для английского языка. Она не просто транскрибирует аудио в текст, но и распознает пунктуацию, капитализацию и временные метки с точностью до слова.
Модель устойчива к шумам и справляется даже с расшифровкой песен или чисел. Это достигнуто за счет обучения на данных, в которые включили «шумные» источники (YouTube, записи телефонных разговоров и уличные диалоги). Как отмечают авторы, RTFx-показатель равен 3380 (при батче 128), что позволяет использовать Parakeet для масштабных промышленных задач.
В основе Parakeet - гибридная архитектура. Она комбинирует скоростной кодировщик FastConformer с декодером TDT, который оптимизирован для транскрипции.
TDT - декодер, который предсказывает слова, звуки и их длительность. Вместо того чтобы проверять каждый кусочек аудиозаписи по порядку, TDT «перепрыгивает» через лишние сегменты, опираясь на прогноз времени, которое занимает текущий токен. Это сокращает вычисления, экономит время и при этом не теряется точность.
Fast Conformer — это переработанная архитектура Conformer, которая ускоряет распознавание речи за счет увеличения downsampling до 8x с помощью более легких сверток и упрощенных блоков, и замены стандартного внимания на комбинацию локального контекста и одного глобального токена.
Обучение Parakeet проводилось в 2 этапа: сначала на 128 GPU A100 с использованием псевдоразмеченных данных, а затем — на 500 часах человеческой транскрипции. Часть обучающего датасета пока недоступна публично, их NVIDIA обещает открыть после конференции Interspeech 2025.
Результаты на бенчмарке Open ASR впечатляют: средняя ошибка (WER) составляет всего 6.05% при greedy decoding без внешней языковой модели. Для сравнения, на чистом аудио из LibriSpeech WER составляет 1.69%, а сильном зашумлении (SNR 5) показатель не превышает 8.39%. В телефонии, где аудио сжимается через μ-law, потери в точности минимальны — всего 4.1%. По этим результатам, Parakeet-tdt-0.6b-v2 может стать универсальным инструментом для колл-центров или мобильных приложений.
Модель поддерживает форматы
.wav
и .flac
с частотой 16 кГц и требует всего 2 ГБ оперативной памяти. Для интеграции разработчикам понадобится фреймворк NeMo от NVIDIA, он упрощает настройку под конкретные задачи.@ai_machinelearning_big_data
#AI #ML #ASR #Parakeet #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤5🔥3⚡1