Анализ данных (Data analysis)
46.2K subscribers
2.27K photos
263 videos
1 file
2.03K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
⚡️ Evo-2: модель для генерации генома, которая знает все древо жизни.

NVIDIA в соавторстве с Arc Institute опубликовали Evo-2, самую большую ИИ-модель для биологии, обученную на 9,3 трлн. пар ДНК из геномного атласа всех форм жизни.

Можно считать, что это LLM, ориентированная на ДНК. Вместо текста Evo 2 генерирует геномные последовательности, читает и интерпретирует сложную ДНК, включая некодирующие регионы, которые обычно считаются неинформативными, генерирует целые хромосомы, новые геномы и предсказывает мутации, вызывающие заболевания, даже те, которые еще не изучены.

Тем самым, можно утверждать, что ИИ переходит от описания биологии к ее проектированию. Это позволяет создавать синтетическую жизнь с нуля, программируемые белковые последовательности, потенциальные новые генные терапии и закладывает основу для моделирования целых клеток. Evo 2 делает биологию вычислительной дисциплиной.

Evo-2 использует StripedHyena 2 - многогибридную модель, сочетающую различные типы операторов для баланса между качеством модели, эффективностью обучения и инференса. StripedHyena 2 опирается на комбинацию из 3 вариантов сверточных операторов, зависящих от входных данных, и механизма внимания. Она моделирует ДНК в нескольких масштабах, улавливая даже слабые взаимодействия, и автономно обучается таким характеристикам, как границы экзонов и интронов, сайты связывания транскрипционных факторов, без участия человека.

Модель была обучена в два этапа (претрейн с контекстом 8192 и последующее обучение с увеличенным до 1 млн.) на датасете из 9,3 триллиона пар оснований бактерий, архей, эукариот и бактериофагов. Evo 2 обрабатывает до 1 млн. пар оснований в одном контекстном окне, умеет "держать в уме" целые хромосомы и может выявлять эволюционные закономерности, ранее не замеченные человеком.

Evo-2 была протестирована на практических возможности генерации, создав синтетические дрожжевые хромосомы, митохондриальные геномы и минимальные бактериальные секвенции и продемонстрировала высокую производительность в задачах, связанных с вариациями генов, включая некодирующие и сплайсинговые варианты

Проект полностью открыт: веса моделей, код и набор данных OpenGenome 2. Представлены два вида моделей:

🟢Evo 2 - 7B и 40B, обученные последовательности длиной до 1 млн;
🟠Evo 2 Base - 1B, 7B и 40B, обученные последовательности длиной 8192.


📌Лицензирование: Apache 2.0 License.


🟡Набор моделей
🟡Техотчет
🟡Датасет
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Evo2 #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥165👍5🤔2