🎓 Фанфакт у статьи Google’s Gemini 2.5 arXiv:2507.06261 — 3295 авторов!
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
❤14🔥5👍4
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@data_analysis_ml
👍13❤6🔥4🤔4
🧠 MindsDB — универсальный MCP-сервер с поддержкой SQL и ИИ
Если вам нужен мощный способ подключать LLM к реальным данным — вот он.
MindsDB — это инструмент, который позволяет обращаться к более чем 200 источникам данных (Slack, Gmail, Google Sheets, базы данных, соцсети и т.д.) с помощью:
▪ обычных SQL-запросов
▪ или просто на естественном языке (например: "покажи все письма от клиента за прошлый месяц")
Что делает его особенным?
▪ Умеет объединять данные из разных систем — как единый запрос
▪ Позволяет вызывать и обучать ML/LLM‑модели прямо из SQL
▪ Работает как MCP‑сервер — можно подключать агентов, чат-ботов и использовать в продуктивной среде
▪ Полностью open-source, с активным сообществом и 33 000+ звёзд на GitHub
💡 Это готовое решение, чтобы построить:
– интеллектуального ассистента с доступом к данным
– LLM-интерфейс к корпоративным системам
– гибкий слой интеграции для агентов
🔗 github.com/mindsdb/mindsdb
@data_analysis_ml
Если вам нужен мощный способ подключать LLM к реальным данным — вот он.
MindsDB — это инструмент, который позволяет обращаться к более чем 200 источникам данных (Slack, Gmail, Google Sheets, базы данных, соцсети и т.д.) с помощью:
▪ обычных SQL-запросов
▪ или просто на естественном языке (например: "покажи все письма от клиента за прошлый месяц")
Что делает его особенным?
▪ Умеет объединять данные из разных систем — как единый запрос
▪ Позволяет вызывать и обучать ML/LLM‑модели прямо из SQL
▪ Работает как MCP‑сервер — можно подключать агентов, чат-ботов и использовать в продуктивной среде
▪ Полностью open-source, с активным сообществом и 33 000+ звёзд на GitHub
💡 Это готовое решение, чтобы построить:
– интеллектуального ассистента с доступом к данным
– LLM-интерфейс к корпоративным системам
– гибкий слой интеграции для агентов
🔗 github.com/mindsdb/mindsdb
@data_analysis_ml
❤14👍7🔥4
🧠 NeuralOS — симуляция операционной системы с помощью нейросети
Новое исследование *NeuralOS: Towards Simulating Operating Systems via Neural Generative Models* показывает, как можно эмулировать поведение GUI операционки с помощью нейросетей — прямо как игру, но из нейронки.
Что сделали авторы:
▪ Соединили RNN (отвечает за отслеживание состояния ОС)
▪ с диффузионным рендерером, который генерирует экран кадр за кадром
▪ На вход идут реальные события: движение мыши, клики, нажатия клавиш
▪ На выходе — визуально достоверный интерфейс, который реагирует на действия
🧪 Обучение:
Модель обучалась на огромном датасете сессий Ubuntu XFCE — с действиями как от рандомных, так и от AI-агентов.
📈 Что получилось:
— правдоподобное поведение UI
— корректное отображение кликов, перемещений
— распознавание переходов состояний: запуск приложений, переключение окон
— пока есть трудности с детальной клавиатурой (например, ввод текста), но базовая навигация работает
💡 Почему это важно:
NeuralOS — это шаг в сторону генеративного интерфейса, где весь UI может быть создан и управляем не кодом, а нейросетью, способной понимать, прогнозировать и адаптироваться к действиям пользователя.
📄 https://huggingface.co/papers/2507.08800
@data_analysis_ml
Новое исследование *NeuralOS: Towards Simulating Operating Systems via Neural Generative Models* показывает, как можно эмулировать поведение GUI операционки с помощью нейросетей — прямо как игру, но из нейронки.
Что сделали авторы:
▪ Соединили RNN (отвечает за отслеживание состояния ОС)
▪ с диффузионным рендерером, который генерирует экран кадр за кадром
▪ На вход идут реальные события: движение мыши, клики, нажатия клавиш
▪ На выходе — визуально достоверный интерфейс, который реагирует на действия
🧪 Обучение:
Модель обучалась на огромном датасете сессий Ubuntu XFCE — с действиями как от рандомных, так и от AI-агентов.
📈 Что получилось:
— правдоподобное поведение UI
— корректное отображение кликов, перемещений
— распознавание переходов состояний: запуск приложений, переключение окон
— пока есть трудности с детальной клавиатурой (например, ввод текста), но базовая навигация работает
💡 Почему это важно:
NeuralOS — это шаг в сторону генеративного интерфейса, где весь UI может быть создан и управляем не кодом, а нейросетью, способной понимать, прогнозировать и адаптироваться к действиям пользователя.
📄 https://huggingface.co/papers/2507.08800
@data_analysis_ml
❤8🔥6👍4🤣1
🤖 Илон Маск: ИИ станет умнее любого человека — меньше чем за 2 года,
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
а умнее всего человечества вместе — меньше чем за 5 лет
По мнению Маска, у ИИ нет потолка — рост идёт экспоненциально, и конца этому тренду не видно.
Он прямо говорит: через несколько лет модели смогут выполнять работу целых корпораций, действуя как единая система.
📌 Почему это звучит серьёзно?
Потому что Dario Amodei, CEO Anthropic, говорит буквально то же самое — с теми же сроками.
Он ожидает, что к 2027 году появится суперинтеллект, способный управлять крупными компаниями как цифровой "мозг-конгломерат".
🔥 Если они правы — нас ждёт резкий сдвиг:
– ИИ перестаёт быть инструментом и становится экономическим субъектом
– Компании превращаются в оболочки для моделей
– Решения, стратегии, оптимизация — передаются системам ИИ
– Конкуренция меняется: человек против облачного суперинтеллекта с API
Мы приближаемся не просто к новой технологии —
а к новой форме разума, способной оперировать как корпорация, но быстрее, точнее и дешевле.
#AI #ElonMusk #Superintelligence #DarioAmodei #Anthropic #FutureOfWork #AGI
@data_analysis_ml
🤣25❤9👍8🤔5🔥4
Новость для тех, кто планирует поступление в магистратуру в этом году — МТС открывает набор на программу по искусственному интеллекту на ФКН ВШЭ
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя🥚
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
🧠 MetaStone‑S1 — первая открытая Reflective Generative Model, сопоставимая с OpenAI o3
Новая модель MetaStone‑S1 от MetaStone-AI представляет собой рефлексивную генеративную архитектуру, ориентированную на эффективное масштабирование при инференсе (TTS).
🔍 Ключевые особенности:
▪ SPRM (Self-supervised Process Reward Model)
Позволяет модели самостоятельно оценивать качество промежуточных шагов рассуждения — без ручной разметки процесса. Это объединяет policy‑модель и reward‑модель в одном бэкенде, экономя 99% параметров PRM.
▪ Три режима рассуждения (TTS Modes)
Выбирайте уровень усилия: low / medium / high — для контроля глубины reasoning на инференсе.
▪ Масштабируемость и производительность
MetaStone‑S1 (32B параметров) показывает результаты на уровне OpenAI o3-mini, при этом оставаясь полностью открытой.
📐 Scaling Law
Авторы выявили эмпирическую закономерность между вычислительной нагрузкой и качеством reasoning — и нашли "aha-момент", где резкий рост качества наступает при определённой глубине мышления.
📊 Бенчмарки:
Модель достигает SOTA-результатов на:
- AIME24 / AIME25
- LiveCodeBench
- C-EVAL и др.
💡 Если вы работаете над LLM-агентами, интерпретируемыми системами или reasoning-моделями — MetaStone‑S1 обязательно к изучению. Это новая парадигма в генеративных ИИ: мышление + самооценка = устойчивое, масштабируемое поведение.
https://huggingface.co/papers/2507.01951
Новая модель MetaStone‑S1 от MetaStone-AI представляет собой рефлексивную генеративную архитектуру, ориентированную на эффективное масштабирование при инференсе (TTS).
🔍 Ключевые особенности:
▪ SPRM (Self-supervised Process Reward Model)
Позволяет модели самостоятельно оценивать качество промежуточных шагов рассуждения — без ручной разметки процесса. Это объединяет policy‑модель и reward‑модель в одном бэкенде, экономя 99% параметров PRM.
▪ Три режима рассуждения (TTS Modes)
Выбирайте уровень усилия: low / medium / high — для контроля глубины reasoning на инференсе.
▪ Масштабируемость и производительность
MetaStone‑S1 (32B параметров) показывает результаты на уровне OpenAI o3-mini, при этом оставаясь полностью открытой.
📐 Scaling Law
Авторы выявили эмпирическую закономерность между вычислительной нагрузкой и качеством reasoning — и нашли "aha-момент", где резкий рост качества наступает при определённой глубине мышления.
📊 Бенчмарки:
Модель достигает SOTA-результатов на:
- AIME24 / AIME25
- LiveCodeBench
- C-EVAL и др.
💡 Если вы работаете над LLM-агентами, интерпретируемыми системами или reasoning-моделями — MetaStone‑S1 обязательно к изучению. Это новая парадигма в генеративных ИИ: мышление + самооценка = устойчивое, масштабируемое поведение.
https://huggingface.co/papers/2507.01951
👍9❤4🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
Google объявила о выходе в общий доступ модели для создания текстовых эмбеддингов - Gemini-Embedding-001. Она доступна разработчикам через Gemini API и Vertex AI. С момента своего экспериментального запуска модель стабильно занимает лидирующие позиции в бенчмарке MTEB и поддерживает более 100 языков.
Gemini Embedding использует технику Matryoshka Representation Learning. Она позволяет разработчикам гибко настраивать размерность выходных векторов, чтобы оптимизировать производительность и затраты на хранение. Максимальная длина входных данных составляет 2048 токенов.
Стоимость использования модели : $0.15 за 1 миллион входных токенов. Доступ к ней можно получить через Gemini API, а бесплатно протестировать - в Google AI Studio.
developers.googleblog.com
Недавно созданное подразделение по разработке AGI инициировало дискуссию о кардинальном изменении стратегии компании. Ключевая идея - отказаться от развития флагманской open-source модели Behemoth в пользу закрытой архитектуры, по аналогии с OpenAI и Google. Такой шаг стал бы серьезным философским сдвигом для компании, которая годами продвигала открытый код и завоевала признание разработчиков.
Обсуждения пока находятся на ранней стадии и требуют одобрения Марка Цукерберга. Однако сама дискуссия, начатая новой командой под руководством Александра Ванга, указывает на возможный стратегический разворот гиганта соцсетей.
nytimes.com
xAI начала развертывание новой функции «Companions» для чат-бота Grok в приложении для iOS. Обновление добавляет в интерфейс интерактивных трехмерных персонажей, цель которых - сделать общение более персонализированным и выйти за рамки текстовых ответов. На данный момент функция доступна платным подписчикам SuperGrok.
Пользователи могут выбрать одного из двух анимированных аватаров: аниме-девушку Ani или красную панду Bad Rudy. Включить их можно в меню настроек. В компании обещают позже добавить третьего персонажа.
Elon Mask в сети Х
Два выдающихся специалиста из Германии, Роланд Эйльс и Ирина Леманн, присоединились к Университету Фудань в Шанхае. Их работа была ключевой в создании атласа клеток поджелудочной железы человека и использовании ИИ для прогнозирования рисков заболеваний.
Эйльс - всемирно известный математик и биолог, руководивший крупными национальными исследовательскими проектами. Леманн - профессор в области эпигенетики, возглавлявшая несколько международных научных конференций. Супруги опубликовали более 1000 научных работ и имеют свыше 100 000 цитирований.
В Университете Фудань они присоединились к Институту интеллектуальной медицины и планируют создать совместную немецко-китайскую ИИ-лабораторию.
scmp.com
Глава Perplexity Аравинд Шринивас рассказал о планах компании начать пост-тренинг моделей Kimi от Moonshot AI. Решение было принято после внутренних тестов, которые показали, что потенциал Kimi сопоставим с GPT-4 и Claude.
Решающим фактором стало превосходство Kimi K2 в бенчмарках на программирование. В частности, в тесте SWE-bench Verified она показала результат 65.8%, значительно опередив Claude с его 50.2%.
В Perplexity рассчитывают, что дальнейшее дообучение модели усилит ее агентные возможности.
CEO Perplexity сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤10👍7🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
GitHub Copilot Agent получил мощное обновление 🚀
Самое интересное
• Сам тестирует изменения UI с помощью Playwright и прикладывает скриншоты к PR
• Подключается к удалённым MCP — больше инструментов, больше контекста
• Управляет задачами через новый удобный дашборд
• Использует всего один premium-запрос на сессию — экономно и эффективно
Доступно для Copilot Pro и Business.
@data_analysis_ml
Самое интересное
• Сам тестирует изменения UI с помощью Playwright и прикладывает скриншоты к PR
• Подключается к удалённым MCP — больше инструментов, больше контекста
• Управляет задачами через новый удобный дашборд
• Использует всего один premium-запрос на сессию — экономно и эффективно
Доступно для Copilot Pro и Business.
@data_analysis_ml
❤9👍4🔥2
📈 METR: у ИИ начинается свой "закон Мура"
Когда ИИ сможет самостоятельно выполнять долгие проекты?
Исследователи из METR нашли закономерность:
временной горизонт задач, которые осиливают AI‑агенты, удваивается каждые ~7 месяцев.
Теперь они проверили это на 9 новых бенчмарках:
MATH, OSWorld, LiveCodeBench, Mock AIME, GPQA Diamond, Tesla FSD, Video-MME, RLBench и SWE-Bench Verified.
Результаты:
🧠 Аналогичные темпы роста и в науке, математике, робототехнике, программировании и даже в автопилоте.
⚡️ Новые модели, вроде o3, растут быстрее прогноза — медианное удвоение теперь ~4 месяца.
🕐 На reasoning-задачах агенты держатся 1+ час.
🖱 А вот в OS и браузере — всё ещё ~2 минуты, из-за слабых инструментов.
> «Moore’s Law для ИИ»: не про чипы — про способность мыслить и работать дольше. Быстрее. Самостоятельно.
ИИ-агенты растут не по дням, а по бенчмаркам.
Когда ИИ сможет самостоятельно выполнять долгие проекты?
Исследователи из METR нашли закономерность:
временной горизонт задач, которые осиливают AI‑агенты, удваивается каждые ~7 месяцев.
Теперь они проверили это на 9 новых бенчмарках:
MATH, OSWorld, LiveCodeBench, Mock AIME, GPQA Diamond, Tesla FSD, Video-MME, RLBench и SWE-Bench Verified.
Результаты:
🧠 Аналогичные темпы роста и в науке, математике, робототехнике, программировании и даже в автопилоте.
⚡️ Новые модели, вроде o3, растут быстрее прогноза — медианное удвоение теперь ~4 месяца.
🕐 На reasoning-задачах агенты держатся 1+ час.
🖱 А вот в OS и браузере — всё ещё ~2 минуты, из-за слабых инструментов.
> «Moore’s Law для ИИ»: не про чипы — про способность мыслить и работать дольше. Быстрее. Самостоятельно.
ИИ-агенты растут не по дням, а по бенчмаркам.
❤13👍9🔥4🤣4
🤔 Хммм… интересно, почему же Grok снова на первом месте в апсторе в Японии?)
Grok Anime-Waifu: новый Ghibli-хайп?
Аниме-вайфу от Grok сейчас переживает тот же всплеск интереса, что и Ghibli‑стиль после выхода инструмента генерации изображений от ChatGPT🎌
xAI поймали незанятую нишу: 3D-аватары с крутым голосовым режимом и небольшой провокацией. Как бы вы ни относились к этой теме — массовый рынок тут есть, и он пока был пуст.
CharacterAI всё ещё в топ‑10 самых посещаемых AI-приложений в мире. Молодёжь массово проводит там часы в общении с вымышленными персонажами. Это о многом говорит — но мы не будем давать оценок деградация это или нет.
Важно другое: ни Google, ни OpenAI, ни Microsoft пока не вышли с 3D-аватарами с продвинутым голосовым режимом.
Все знали, что это огромный рынок, но опасались репутационных последствий — вспомните скандалы вокруг CharacterAI в прошлом году.
А xAI рискнули — и пока пожинают плоды . Аудитория молодая, хайп органический, конкуренты только приглядываются к теме. Быть первым в такой категории — значит занять особое место в головах (пустых и не очень) пользователей.
Так что да: xAI сделали ставку — и, похоже, угадали.
@data_analysis_ml
Grok Anime-Waifu: новый Ghibli-хайп?
Аниме-вайфу от Grok сейчас переживает тот же всплеск интереса, что и Ghibli‑стиль после выхода инструмента генерации изображений от ChatGPT🎌
xAI поймали незанятую нишу: 3D-аватары с крутым голосовым режимом и небольшой провокацией. Как бы вы ни относились к этой теме — массовый рынок тут есть, и он пока был пуст.
CharacterAI всё ещё в топ‑10 самых посещаемых AI-приложений в мире. Молодёжь массово проводит там часы в общении с вымышленными персонажами. Это о многом говорит — но мы не будем давать оценок деградация это или нет.
Важно другое: ни Google, ни OpenAI, ни Microsoft пока не вышли с 3D-аватарами с продвинутым голосовым режимом.
Все знали, что это огромный рынок, но опасались репутационных последствий — вспомните скандалы вокруг CharacterAI в прошлом году.
А xAI рискнули — и пока пожинают плоды . Аудитория молодая, хайп органический, конкуренты только приглядываются к теме. Быть первым в такой категории — значит занять особое место в головах (пустых и не очень) пользователей.
Так что да: xAI сделали ставку — и, похоже, угадали.
@data_analysis_ml
❤10🤣9👍3🔥3
🎓 Новые лекции от UCLA: *Reinforcement Learning of Large Language Models* (весна 2025)
Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.
📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.
Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.
🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения
#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA
🔜 Youtube: https://youtube.com/playlist?list=PLir0BWtR5vRp5dqaouyMU-oTSzaU5LK9r
🔜 Курс: https://ernestryu.com/courses/RL-LLM.html
Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.
📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.
Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.
🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения
#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤5👍3
⚡️ Skywork-R1V3 — новейшая мультимодальная LLM с открытыми весами от китайской компании SkyworkAI. Модель демонстрирует SOTA-результаты в бенчмарках мультимодального мышления, превосходя аналогичные open-source решения и некоторые проприетарные модели.
Проект использует RL-дообучения для улучшения логических и визуальных цепочек рассуждений. Доступны квантованные версии для запуска на видеокартах с 30+ GB памяти.
🤖 GitHub
@data_analysis_ml
Проект использует RL-дообучения для улучшения логических и визуальных цепочек рассуждений. Доступны квантованные версии для запуска на видеокартах с 30+ GB памяти.
🤖 GitHub
@data_analysis_ml
❤4👍3🔥2😁1
💥 Исследователи из Университета Торонто представили первую в мире атаку типа Rowhammer, работающую на видеопамяти GPU — GPUHammer. Им удалось взломать защиту NVIDIA A6000 и изменять данные в памяти GDDR6, что особенно опасно для систем машинного обучения.
Для атаки использовали особенности CUDA и оптимизации доступа к памяти. NVIDIA рекомендует включать ECC, но это снижает производительность на 10%. Код эксплойта уже выложен в открытый доступ.
🔗 Ссылка - *клик*
@data_analysis_ml
Для атаки использовали особенности CUDA и оптимизации доступа к памяти. NVIDIA рекомендует включать ECC, но это снижает производительность на 10%. Код эксплойта уже выложен в открытый доступ.
🔗 Ссылка - *клик*
@data_analysis_ml
❤5🤯4👍3🔥1
🔥 Бывший сотрудник OpenAI поделился откровенными впечатлениями о годе работы внутри одной из самых обсуждаемых компаний мира.
Он присоединился к команде в мае 2024, ушёл три недели назад — и решил написать личные размышления, пока всё ещё свежо в памяти.
Он подчёркивает: никаких скандалов или внутренних конфликтов — просто желание снова что-то строить с нуля. Несмотря на это, он признаёт: сложно уйти с работы, где ты видишь рождение AGI своими глазами и участвуешь в запуске Codex.
Культура OpenAI — это хаос, скорость и независимость.
Компания за год выросла с 1000 до более чем 3000 сотрудников. Почти все руководители делают совершенно другую работу, чем пару лет назад. И всё внутри строится снизу вверх: roadmap’ов не было, а идеи рождались и запускались без бюрократии.
Всё общение происходит в Slack — никаких email, почти никакого планирования. Команды могут быть хаотичны и перегружены, но часто это работает: если идея крутая, люди просто начинают делать, и вокруг появляется команда.
Руководители не мешают, а помогают — особенно в исследовательских командах. Исследователь воспринимается как мини-руководитель: выбрал интересную задачу — вперёд. Главное — не «казаться», а «делать». Политика и презентации — не в цене. Лучшие идеи побеждают.
OpenAI умеет разворачиваться на ходу. Как только появляется новая информация, стратегия может кардинально поменяться — и в этом сила. Вдохновлённый атмосферой Segment, автор признаёт: OpenAI удалось сохранить эту гибкость даже при таком масштабе.
Закрытость — часть культуры.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри. Но при этом она остаётся самой открытой из «больших AI-лабораторий»: модели попадают в API, доступны не только корпорациям, но и отдельным пользователям.
Внимание к реальным рискам (злоупотребления, манипуляции, self-harm) — важный фокус внутри. Хоть фундаментальные угрозы (в духе "intelligence explosion") тоже обсуждаются, упор в работе на конкретные и прикладные сценарии.
Технологически OpenAI — монорепозиторий на Python, немного Rust и Go. Всё крутится на Azure, но доверяют только 2–3 сервисам. Инфраструктура напоминает ранний Facebook: всё движется быстро, дублируется, много внутренней разработки и отсутствие строгих архитектурных комитетов.
Он отдельно отметил уникальность команды Codex, с которой провёл последние 3 месяца. За 7 недель (!) они с нуля запустили продукт: с контейнерным рантаймом, fine-tuning моделей, git-интеграцией и полноценным асинхронным агентом. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.
Codex показал: будущее программирования будет похоже на общение с ассистентом, а не набор кода строка за строкой. С момента запуска Codex сгенерировал более 630 000 pull request’ов — это десятки тысяч на каждого инженера в команде.
Несмотря на скандалы в пресе — тысячи людей, искренне верящих, что строят нечто важное. OpenAI остаётся одной из самых амбициозных организаций в мире: не только чат, не только API, но и hardware, агенты, изображения — и это ещё не всё.
📌 Читать
@data_analysis_ml
#openai #ai #ml #llm #chatgpt
Он присоединился к команде в мае 2024, ушёл три недели назад — и решил написать личные размышления, пока всё ещё свежо в памяти.
Он подчёркивает: никаких скандалов или внутренних конфликтов — просто желание снова что-то строить с нуля. Несмотря на это, он признаёт: сложно уйти с работы, где ты видишь рождение AGI своими глазами и участвуешь в запуске Codex.
Культура OpenAI — это хаос, скорость и независимость.
Компания за год выросла с 1000 до более чем 3000 сотрудников. Почти все руководители делают совершенно другую работу, чем пару лет назад. И всё внутри строится снизу вверх: roadmap’ов не было, а идеи рождались и запускались без бюрократии.
Всё общение происходит в Slack — никаких email, почти никакого планирования. Команды могут быть хаотичны и перегружены, но часто это работает: если идея крутая, люди просто начинают делать, и вокруг появляется команда.
Руководители не мешают, а помогают — особенно в исследовательских командах. Исследователь воспринимается как мини-руководитель: выбрал интересную задачу — вперёд. Главное — не «казаться», а «делать». Политика и презентации — не в цене. Лучшие идеи побеждают.
OpenAI умеет разворачиваться на ходу. Как только появляется новая информация, стратегия может кардинально поменяться — и в этом сила. Вдохновлённый атмосферой Segment, автор признаёт: OpenAI удалось сохранить эту гибкость даже при таком масштабе.
Закрытость — часть культуры.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри. Но при этом она остаётся самой открытой из «больших AI-лабораторий»: модели попадают в API, доступны не только корпорациям, но и отдельным пользователям.
Внимание к реальным рискам (злоупотребления, манипуляции, self-harm) — важный фокус внутри. Хоть фундаментальные угрозы (в духе "intelligence explosion") тоже обсуждаются, упор в работе на конкретные и прикладные сценарии.
Технологически OpenAI — монорепозиторий на Python, немного Rust и Go. Всё крутится на Azure, но доверяют только 2–3 сервисам. Инфраструктура напоминает ранний Facebook: всё движется быстро, дублируется, много внутренней разработки и отсутствие строгих архитектурных комитетов.
Он отдельно отметил уникальность команды Codex, с которой провёл последние 3 месяца. За 7 недель (!) они с нуля запустили продукт: с контейнерным рантаймом, fine-tuning моделей, git-интеграцией и полноценным асинхронным агентом. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.
Codex показал: будущее программирования будет похоже на общение с ассистентом, а не набор кода строка за строкой. С момента запуска Codex сгенерировал более 630 000 pull request’ов — это десятки тысяч на каждого инженера в команде.
Несмотря на скандалы в пресе — тысячи людей, искренне верящих, что строят нечто важное. OpenAI остаётся одной из самых амбициозных организаций в мире: не только чат, не только API, но и hardware, агенты, изображения — и это ещё не всё.
📌 Читать
@data_analysis_ml
#openai #ai #ml #llm #chatgpt
❤17👍9🔥6🥴1
This media is not supported in your browser
VIEW IN TELEGRAM
Не прошло и дня: эра 3D-вайфу на базе ИИ набирает обороты.
Первые open-source версии этого чуда уже на доступны на GitHub
https://github.com/Jackywine/Bella
@data_analysis_ml
#ai #ml
Первые open-source версии этого чуда уже на доступны на GitHub
https://github.com/Jackywine/Bella
@data_analysis_ml
#ai #ml
🔥11❤8👍4😱3