Написал большой текст про особенности российской официальной статистики
Российская статистика: немашиночитаемая институциональная фрагментация
в этот раз там не столько про машиночитаемость, и даже не столько про цифровизацию Росстата, сколько про его территориальные подразделения и про гигантское дробление данных и публикаций которые они создают.
Я не стал этого добавлять в большой текст, добавлю здесь. В среднем на сайте терр. органа Росстата опубликовано от 500 до 2000 документов, примерно такое же число публикаций выпущенных ими на бумаге. Если все эти документы собрать вместе то был бы каталог от 50 до 200 тысяч статистических публикаций и это было бы даже каталогом данных, наполовину,уж точно.
Но этого никогда не будет до тех пор пока подразделения Росстата торгуют данными.
#opendata #data #statistics #russia
Российская статистика: немашиночитаемая институциональная фрагментация
в этот раз там не столько про машиночитаемость, и даже не столько про цифровизацию Росстата, сколько про его территориальные подразделения и про гигантское дробление данных и публикаций которые они создают.
Я не стал этого добавлять в большой текст, добавлю здесь. В среднем на сайте терр. органа Росстата опубликовано от 500 до 2000 документов, примерно такое же число публикаций выпущенных ими на бумаге. Если все эти документы собрать вместе то был бы каталог от 50 до 200 тысяч статистических публикаций и это было бы даже каталогом данных, наполовину,уж точно.
Но этого никогда не будет до тех пор пока подразделения Росстата торгуют данными.
#opendata #data #statistics #russia
В The Economist статья The British state is blind [1] о том что статслужба Великобритании неправильно считала миграцию в страну и сильно её занижала. По оценкам с 2019 года, как минимум, был недооценён въезд около 1 миллиона мигрантов.
Статья под пэйволом, но есть копии её текста [2].
Тут бы, конечно, сдержаться от саркастического смеха, но сложно.
Чем отличается британская статслужба от других? Только тем что попались и эту ошибку признают. Почему мы полагаем что другие официальные стат агентства работают лучше или что их данные достовернее? Официальная статистика во многих странах уже достаточно давно в кризисе. Во многих неразвитых и развивающихся странах всё ещё полно технических и методических вопросов хотя бы по основным статпоказателям, а во многих развитых странах альтернативные источники данных становятся приоритетнее,
А думаете статистика в вашей стране не врёт?
Ссылки:
[1] https://www.economist.com/britain/2024/12/04/the-british-state-is-blind
[2] https://us6.campaign-archive.com/?e=35defdcd70&u=1a990feb5c&id=c349203b07#mctoc4
#statistics #data #migration #uk
Статья под пэйволом, но есть копии её текста [2].
Тут бы, конечно, сдержаться от саркастического смеха, но сложно.
Чем отличается британская статслужба от других? Только тем что попались и эту ошибку признают. Почему мы полагаем что другие официальные стат агентства работают лучше или что их данные достовернее? Официальная статистика во многих странах уже достаточно давно в кризисе. Во многих неразвитых и развивающихся странах всё ещё полно технических и методических вопросов хотя бы по основным статпоказателям, а во многих развитых странах альтернативные источники данных становятся приоритетнее,
А думаете статистика в вашей стране не врёт?
Ссылки:
[1] https://www.economist.com/britain/2024/12/04/the-british-state-is-blind
[2] https://us6.campaign-archive.com/?e=35defdcd70&u=1a990feb5c&id=c349203b07#mctoc4
#statistics #data #migration #uk
Я тут задумался над тем какие практические инструменты с LLM внутри я использую в работе и для чего хотелось бы использовать ещё. Хотелось бы, для многого конечно, но не всё ещё существует
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Самое очевидное это переписывание текстов с помощью DeepL Write. Очень удобно для переписке и публикаций не на родном языке, поскольку сильно выправляет текст. Похоже на Grammarly, но ощущение что итоговый текст гораздо лучше и поддерживается не только английский язык. Главный минус пока только в том что поддерживаются только 8 языков. В любом случае очень удобно для публикации в англоязычных и других соцсетях
Совсем не такое очевидное, но важное для меня это сбор информации о дата каталогах. Это довольно специфическая лично моя задача по обновлению реестра каталогов данных в Dateno. Этот процесс на текущей стадии ручной, поскольку автоматизированный ранее собранных каталогов уже выполнен и оставшаяся часть работы - это ручная разметка. В частности вручную проставляется инфа по каталогу данных:
- название
- описание
- название владельца
- тип владельца (гос-во, муниципалитет, ученые и тд.)
- тематики
- теги
А также простановка геопривязки для тех ресурсов у которых её нет или если выясняется что они уровня регионов.
Это много ручной работы напрямую влияющей на качество данных в Dateno, поскольку тип владельца, геопривязки и тематики идут в фасеты поиска, а остальные поля отображаются в карточках датасетов.
Оказалось что Perplexity отлично выдаёт ответы на такие вопросы как:
- Who owns <> website ?
- About what this website is <> ?
А также, что очень практически удобно, Perplexity умеет точно отвечать на такие вопросы как "What is ISO3166-2 code of the Magallanes and Chilean Antarctica ?" и выдавать точный код.
Скорее всего Perplexity можно заменить на другую модель, но и текущие результаты вполне полезны.
Сейчас в Dateno около 18% (3.4 миллиона) наборов данных не имеют пометки типа владельца данных, а 2.4 миллиона не имеют привязки к стране/территории.
Это, в любом случае лучше чем у Google Dataset Search, но всё ещё недостаточно хорошо.
Применение LLM в повышении качества метаданных кажется очень реалистичной задачей.
#ai #thoughts #dateno #datasets #data
Про плохие практики публикации открытых данных, вот пример совершенно неожиданный, дата хаб штата Массачусетс (США) [1].
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
С виду он неплохо выглядит, по крайней мере внешне, но, это не должно обманывать, у него есть несколько системных недостатков:
1. Это не каталог данных, а список внешних ресурсов. Практически все ссылки ведут на другие сайты принадлежащие штату или федеральной власти, вроде сайта переписи census.gov
2. Наборов данных там всего 384 что очень мало, потому что на одном только портале города Кембридж (входит в штат) есть 432 набора данных [2]
3. В поиске нет возможности фильтровать ни по одному из фильтров кроме темы
4. Нет API, нет экспорта метаданных,
5. Часть ссылок вообще ведут на страницы сервиса Tableau с дашбордами откуда данные не скачать без авторизации [3]
В общем-то для США это довольно редкий пример, потому как там почти все порталы открытых данных сделаны, либо на движке Socrata, либо CKAN, либо ArcGIS Hub.
При этом у штата есть вполне приличный по размеру и содержанию каталог геоданных [4] с 2439 наборами данных, включая исторические.
Впрочем я уже писал о том что в США важные особенности развития открытых данных - это высокая их фрагментированность, рассеяность по множеству ресурсов и в том что геоданных и научных данных значительно больше всех остальных.
Ссылки:
[1] https://data.mass.gov
[2] https://data.cambridgema.gov/browse
[3] https://public.tableau.com/app/profile/drap4687/viz/MassachusettsTrialCourtChargesDashboard/AllCharges
[4] https://gis.data.mass.gov/search
#opendata #datasets #data #usa #geodata
В рубрике закрытых данных в РФ с декабря 2021 года с портала данных Министерства культуры РФ [1] исчезло 8 наборов данных. Было 62 [2], а стало 54 на начало декабря 2024 г. Новости портала не обновлялись также с середины 2021 года [3]
Хорошая новость в том что оставшиеся наборы данных пока ещё обновляются.
А когда-то это был один из лучших порталов открытых данных в России. Говорю как человек которые уже пересмотрел тысячи сайтов с открытыми данными.
Ссылки:
[1] https://opendata.mkrf.ru/opendata
[2] https://web.archive.org/web/20211130053406/https://opendata.mkrf.ru/opendata
[3] https://opendata.mkrf.ru/item/newslist
#closeddata #data #opendata #russia #culture
Хорошая новость в том что оставшиеся наборы данных пока ещё обновляются.
А когда-то это был один из лучших порталов открытых данных в России. Говорю как человек которые уже пересмотрел тысячи сайтов с открытыми данными.
Ссылки:
[1] https://opendata.mkrf.ru/opendata
[2] https://web.archive.org/web/20211130053406/https://opendata.mkrf.ru/opendata
[3] https://opendata.mkrf.ru/item/newslist
#closeddata #data #opendata #russia #culture