В рубрике интересных поисковиков по данным Datacite Commons [1] это поисковик по научным данным, другим научным работам, научным организациям и репозиториям данных. Создан и развивается компанией DataCite, выдающей DOI для работ связанным с данными и собирающей единый индекс научных работ с метаданными объектов которые получили эти DOI.
Выглядит достаточно большим, 61 миллион работ включая 19 миллионов наборов данных [2].
Но, если присмотреться, то не всё так там с этим просто.
1) Значительная часть датасетов, около 2 миллионов, находятся на сервисе Data Planet [3] и публично недоступны, даже каталог посмотреть нельзя, только метаданные в DataCite.
2) Как минимум два источника - это GBIF и The Cambridge Structural Database это базы со структурированным описанием встречаемости видов и химических элементов. Это не датасеты, а как бы единые базы нарезанные на большое число записей. На эти записи по отдельности выдаются DOI, но называть их датасетами скорее неправильно.
3) Особенность метаданных в DataCite в отсутствии ссылок на файлы/ресурсы, поэтому те карточки датасетов что там есть не дают информации по реальному содержанию, только говорят о факте существования набора данных.
На фоне DataCite Commons у нас в Dateno реализовано гораздо больше, и с точки зрения объёмов проиндексированного, и с точки зрения удобства поиска.
Но не все источники данных из DataCite сейчас есть в Dateno и их ещё предстоит добавить. Ключевой вопрос в том рассматривать источники данных такие как GBIF как множество датасетов или не считать такое дробление обоснованным?
Ссылки:
[1] https://commons.datacite.org
[2] https://commons.datacite.org/statistics
[3] https://data.sagepub.com
#opendata #data #datasearch
Выглядит достаточно большим, 61 миллион работ включая 19 миллионов наборов данных [2].
Но, если присмотреться, то не всё так там с этим просто.
1) Значительная часть датасетов, около 2 миллионов, находятся на сервисе Data Planet [3] и публично недоступны, даже каталог посмотреть нельзя, только метаданные в DataCite.
2) Как минимум два источника - это GBIF и The Cambridge Structural Database это базы со структурированным описанием встречаемости видов и химических элементов. Это не датасеты, а как бы единые базы нарезанные на большое число записей. На эти записи по отдельности выдаются DOI, но называть их датасетами скорее неправильно.
3) Особенность метаданных в DataCite в отсутствии ссылок на файлы/ресурсы, поэтому те карточки датасетов что там есть не дают информации по реальному содержанию, только говорят о факте существования набора данных.
На фоне DataCite Commons у нас в Dateno реализовано гораздо больше, и с точки зрения объёмов проиндексированного, и с точки зрения удобства поиска.
Но не все источники данных из DataCite сейчас есть в Dateno и их ещё предстоит добавить. Ключевой вопрос в том рассматривать источники данных такие как GBIF как множество датасетов или не считать такое дробление обоснованным?
Ссылки:
[1] https://commons.datacite.org
[2] https://commons.datacite.org/statistics
[3] https://data.sagepub.com
#opendata #data #datasearch
Для тех кто давно не слышал новостей про наш стартап-проект Dateno.io, поисковой системы по данным, вот самая свежая новость - мы создали личный кабинет и доступ к поисковому индексу через API. Поисковый индекс тоже растёт и составляет уже 19 миллионов наборов данных и это не предел, цель была до конца года достичь хотя бы 20 миллионов, но реально будет больше, скорее всего.
В любом случае API Dateno можно уже пользоваться, интегрировать с собственными разработками, строить поисковики, например, по странам и ещё многое другое.
Пишите про ваши кейсы использования, какие возникнут вопросы и идеи, будем придавать им приоритет.
#opendata #datasearch #data #dateno
В любом случае API Dateno можно уже пользоваться, интегрировать с собственными разработками, строить поисковики, например, по странам и ещё многое другое.
Пишите про ваши кейсы использования, какие возникнут вопросы и идеи, будем придавать им приоритет.
#opendata #datasearch #data #dateno
Forwarded from Dateno
Dateno Expands Data Capabilities for Professionals with API and Dashboard Tools!
We are thrilled to announce the launch of two powerful tools designed specifically for data professionals: the My Dateno personal dashboard and the Dateno API! These updates will greatly enhance your ability to manage and integrate data search into your workflows.
With My Dateno, users can now track their search history and access API keys, making it easier than ever to tap into Dateno's extensive data search capabilities. In the future, My Dateno will also provide access to premium features and additional data services. Plus, those who join our early access program will get free access to these new features during the testing period!
The Dateno API enables developers and businesses to integrate our platform’s search functionality directly into their products and infrastructure. This API offers fast, efficient search across 19 million datasets—including data files, geoAPI connections, and statistical indicators—with powerful filtering options. Retrieve comprehensive metadata and related resources, and streamline your data processing with ease.
We’re excited to empower data professionals with these new tools! 🚀
Learn more and sign up for early access at dateno.io
#Dateno #DataSearch #API #Innovation #DataIntegration #DataProfessionals
We are thrilled to announce the launch of two powerful tools designed specifically for data professionals: the My Dateno personal dashboard and the Dateno API! These updates will greatly enhance your ability to manage and integrate data search into your workflows.
With My Dateno, users can now track their search history and access API keys, making it easier than ever to tap into Dateno's extensive data search capabilities. In the future, My Dateno will also provide access to premium features and additional data services. Plus, those who join our early access program will get free access to these new features during the testing period!
The Dateno API enables developers and businesses to integrate our platform’s search functionality directly into their products and infrastructure. This API offers fast, efficient search across 19 million datasets—including data files, geoAPI connections, and statistical indicators—with powerful filtering options. Retrieve comprehensive metadata and related resources, and streamline your data processing with ease.
We’re excited to empower data professionals with these new tools! 🚀
Learn more and sign up for early access at dateno.io
#Dateno #DataSearch #API #Innovation #DataIntegration #DataProfessionals
Как обещал пишу о том как работать с API Dateno, пока на уровне совсем азов, а далее будут примеры на Python и других языках. Может быть даже SDK, телеграм бот и не только.
1. Идём на Dateno.io, нажимаем на Sign In и регистрируемся на сайте my.dateno.io, там же получаем ключ
2. Открывает документацию на API по адресу api.dateno.io и смотрим как устроены запросы
3. Берём командную строку или UI инструмент или Python и делаем запрос к эндпоинту. Например такой запрос: https://api.dateno.io/index/0.1/query?apikey=my_personal_key&q=Nuclear&filters="source.countries.name"="Kazakhstan" где my_personal_key ключ из личного кабинета.
4. Получаем ответом JSON с результатами поиска по ключевому слову "Nuclear" и по стране Казахстан (Kazakhstan). В ответе ссылки на статистику связанную с ядерной энергетикой страны
5. Параметр filters можно передавать много раз и задавать не только страну, но и тип ПО (source.software.name), тип каталога данных source.catalog_type или тип владельца каталога данных "source.owner_type".
6. Фильтры - это фасеты. При запросе они возвращаются в атрибуте facetDistribution. Можно сделать вначале запрос без фасетов, получить найденные значения и далее фильтровать. Если будет запрос от пользователей, то мы опубликуем, в дополнение к API, полные значения фасетов.
7. В результатах поиска есть ссылка на первоисточник, но нет ссылок на ресурсы которые файлы или API. Чтобы из получить надо сделать запрос к точке подключения https://api.dateno.io/search/0.1/entry/{entry_id}?apikey=my_personal_key где entry_id - это идентификатор записи из результатов поиска. Ресурсов может не быть, иногда, может быть только один как в случае на картинке, а может быть много, десятки. Поэтому к ним запросы индивидуально.
API - это уникальная фича Dateno, открытого API нет у Google Dataset Search и большинства поисковиков по данным. Оно есть только у некоторых поисковиков по научным данным/ресурсам, но они сильно меньше по размеру чем индекс Dateno.
Пишите мне если про API будут вопросы, они почти наверняка появятся.
#opendata #api #dateno #datasearch #data
1. Идём на Dateno.io, нажимаем на Sign In и регистрируемся на сайте my.dateno.io, там же получаем ключ
2. Открывает документацию на API по адресу api.dateno.io и смотрим как устроены запросы
3. Берём командную строку или UI инструмент или Python и делаем запрос к эндпоинту. Например такой запрос: https://api.dateno.io/index/0.1/query?apikey=my_personal_key&q=Nuclear&filters="source.countries.name"="Kazakhstan" где my_personal_key ключ из личного кабинета.
4. Получаем ответом JSON с результатами поиска по ключевому слову "Nuclear" и по стране Казахстан (Kazakhstan). В ответе ссылки на статистику связанную с ядерной энергетикой страны
5. Параметр filters можно передавать много раз и задавать не только страну, но и тип ПО (source.software.name), тип каталога данных source.catalog_type или тип владельца каталога данных "source.owner_type".
6. Фильтры - это фасеты. При запросе они возвращаются в атрибуте facetDistribution. Можно сделать вначале запрос без фасетов, получить найденные значения и далее фильтровать. Если будет запрос от пользователей, то мы опубликуем, в дополнение к API, полные значения фасетов.
7. В результатах поиска есть ссылка на первоисточник, но нет ссылок на ресурсы которые файлы или API. Чтобы из получить надо сделать запрос к точке подключения https://api.dateno.io/search/0.1/entry/{entry_id}?apikey=my_personal_key где entry_id - это идентификатор записи из результатов поиска. Ресурсов может не быть, иногда, может быть только один как в случае на картинке, а может быть много, десятки. Поэтому к ним запросы индивидуально.
API - это уникальная фича Dateno, открытого API нет у Google Dataset Search и большинства поисковиков по данным. Оно есть только у некоторых поисковиков по научным данным/ресурсам, но они сильно меньше по размеру чем индекс Dateno.
Пишите мне если про API будут вопросы, они почти наверняка появятся.
#opendata #api #dateno #datasearch #data
Могу сказать что один из самых частых вопросов по Dateno - это как сделать чтобы мои данные были проиндексированы? Вопрос этот одновременно очень простой и сложный.
Модель индексирования данных в Dateno основано на доверии к источникам данных. Вместо того чтобы сканировать весь интернет на наличие датасетов, существует реестр каталогов данных [1] в котором более 10 тысяч каталогов и куча метаданных о них. Чуть более половины этих каталогов данных уже проиндексированы и доля проиндексированных постепенно растёт.
Индексирование датасетов таким образом, на самом деле, сложнее чем попытаться воспроизвести краулер Google Data Search (GDS), потому что для такого краулера можно было бы просто взять индекс Common Crawl и регулярно обновлять метаданные оттуда. Ресурсоёмкая, но интеллектуально простая задача. Если идти таким путём то немедленно всплывают все проблемы с качеством данных, с тем что существенная часть датасетов публикуется только для SEO продвижения и так далее.
Индексирование каталогов же предполагает что кто-то уже провел работу по валидации того что этот датасет не полное фуфло, а что-то осмысленное.
Поэтому как проще всего опубликовать датасеты? Проще всего, либо опубликовать на одном из каталогов данных которые Dateno индексирует. Второй вариант - это развернуть собственный каталог данных и прислать на него ссылку. Но этот каталог должен работать на типовом ПО таком как CKAN [2], DKAN [3], JKAN [4], InvenioRDM [5] и ряде других. Если Вы публикуете не один набор данных, а множество то использование типового портала для их публикации - это хорошая практика. Например, в РФ от Инфокультуры мы создавали Хаб открытых данных [6], а в Армении Data Catalog Armenia [7], оба на базе движка CKAN как наиболее продвинутого для публикации данных.
У публичных каталогов открытых данных, при этом, есть свои ограничения. К примеру, мы закрыли регистрацию пользователей на наших CKAN порталах из-за бесконечного объёма спама. А то есть, если Вы хотите там что-то опубликовать, то надо написать админам чтобы они Вас там зарегистрировали. Спамеры - это неприятная часть нашей жизни и ещё один довод в пользу создания собственных каталогов данных.
Тем не менее у нас в Dateno постоянно крутится идея того что иногда чтобы что-то проиндексировать, надо это что-то собрать в каталог. А Dateno не каталог, а именно поисковик. Например, крипто данные разбросаны по интернету. Возможно стоит создать каталог крипто данных и уже его проиндексировать в Dateno. Он будет указывать на первоисточники, конечно, но будет пополняем. Хорошая ли это идея? Пока непонятно, если бы был подтверждённый исследовательский интерес к теме то можно было бы хоть сразу запилить каталог данных для исследователей по этой теме.
А вот другой пример, многие госорганы в разных странах массово публикуют документы. И, предположим, у нас есть код превращающий таблицы из документов в машиночитаемые файлы. Но вот так просто их не поместить сейчас в Dateno потому что Dateno содержит только ссылки на ресурсы, но не сами файлы. Расширять ли Dateno или делать промежуточный каталог данных ?
Есть немало таких примеров с необходимостью промежуточных каталогов для существенного расширения доступности многих данных. И это уже куда больше чем просто индексация данных, де-факто это создание датасетов. Техника с помощью которой мы можем добавить в поисковый индекс ещё десяток миллионов карточек датасетов без феноменальных усилий.
Возвращаясь к публикации данных, Dateno - это поисковик. Задача его как продукта в повышении находимости данных. Всегда есть большой соблазн отклониться чуть в сторону, расширить границы продукта и добавить больше возможностей за пределами строго определённых фич. Публикация данных одна из таких возможностей, над которой, мы конечно же думаем.
Ссылки:
[1] https://dateno.io/registry
[2] https://ckan.org
[3] https://getdkan.org
[4] https://jkan.io
[5] https://inveniosoftware.org/products/rdm/
[6] https://hubofdata.ru
[7] https://data.opendata.am
#opendata #datasets #data #datasearch #dateno
Модель индексирования данных в Dateno основано на доверии к источникам данных. Вместо того чтобы сканировать весь интернет на наличие датасетов, существует реестр каталогов данных [1] в котором более 10 тысяч каталогов и куча метаданных о них. Чуть более половины этих каталогов данных уже проиндексированы и доля проиндексированных постепенно растёт.
Индексирование датасетов таким образом, на самом деле, сложнее чем попытаться воспроизвести краулер Google Data Search (GDS), потому что для такого краулера можно было бы просто взять индекс Common Crawl и регулярно обновлять метаданные оттуда. Ресурсоёмкая, но интеллектуально простая задача. Если идти таким путём то немедленно всплывают все проблемы с качеством данных, с тем что существенная часть датасетов публикуется только для SEO продвижения и так далее.
Индексирование каталогов же предполагает что кто-то уже провел работу по валидации того что этот датасет не полное фуфло, а что-то осмысленное.
Поэтому как проще всего опубликовать датасеты? Проще всего, либо опубликовать на одном из каталогов данных которые Dateno индексирует. Второй вариант - это развернуть собственный каталог данных и прислать на него ссылку. Но этот каталог должен работать на типовом ПО таком как CKAN [2], DKAN [3], JKAN [4], InvenioRDM [5] и ряде других. Если Вы публикуете не один набор данных, а множество то использование типового портала для их публикации - это хорошая практика. Например, в РФ от Инфокультуры мы создавали Хаб открытых данных [6], а в Армении Data Catalog Armenia [7], оба на базе движка CKAN как наиболее продвинутого для публикации данных.
У публичных каталогов открытых данных, при этом, есть свои ограничения. К примеру, мы закрыли регистрацию пользователей на наших CKAN порталах из-за бесконечного объёма спама. А то есть, если Вы хотите там что-то опубликовать, то надо написать админам чтобы они Вас там зарегистрировали. Спамеры - это неприятная часть нашей жизни и ещё один довод в пользу создания собственных каталогов данных.
Тем не менее у нас в Dateno постоянно крутится идея того что иногда чтобы что-то проиндексировать, надо это что-то собрать в каталог. А Dateno не каталог, а именно поисковик. Например, крипто данные разбросаны по интернету. Возможно стоит создать каталог крипто данных и уже его проиндексировать в Dateno. Он будет указывать на первоисточники, конечно, но будет пополняем. Хорошая ли это идея? Пока непонятно, если бы был подтверждённый исследовательский интерес к теме то можно было бы хоть сразу запилить каталог данных для исследователей по этой теме.
А вот другой пример, многие госорганы в разных странах массово публикуют документы. И, предположим, у нас есть код превращающий таблицы из документов в машиночитаемые файлы. Но вот так просто их не поместить сейчас в Dateno потому что Dateno содержит только ссылки на ресурсы, но не сами файлы. Расширять ли Dateno или делать промежуточный каталог данных ?
Есть немало таких примеров с необходимостью промежуточных каталогов для существенного расширения доступности многих данных. И это уже куда больше чем просто индексация данных, де-факто это создание датасетов. Техника с помощью которой мы можем добавить в поисковый индекс ещё десяток миллионов карточек датасетов без феноменальных усилий.
Возвращаясь к публикации данных, Dateno - это поисковик. Задача его как продукта в повышении находимости данных. Всегда есть большой соблазн отклониться чуть в сторону, расширить границы продукта и добавить больше возможностей за пределами строго определённых фич. Публикация данных одна из таких возможностей, над которой, мы конечно же думаем.
Ссылки:
[1] https://dateno.io/registry
[2] https://ckan.org
[3] https://getdkan.org
[4] https://jkan.io
[5] https://inveniosoftware.org/products/rdm/
[6] https://hubofdata.ru
[7] https://data.opendata.am
#opendata #datasets #data #datasearch #dateno
В рубрике интересных каталогов и поисковиков по данным проект WorldEx [1] каталог данных и поисковик геоданных привязанных к хексагонам.
Кодирование через хексагоны стало популярным относительно недавно, авторы используют библиотеку H3 [2] от Uber.
Подход любопытный, благо в Dateno у нас миллионы датасетов с геоданными и было бы любопытно разметить их по хексагонам. Очень любопытно.
Сам проект worldex с открытым кодом [3], хранят данные в PostGIS и Elasticsearch.
Жаль не удалось найти код конвейеров данных по геокодированию в H3, но и без него такое можно повторить.
Ссылки:
[1] https://worldex.org
[2] https://h3geo.org
[3] https://github.com/worldbank/worldex
#opendata #data #search #datasearch #datacatalogs #dataviz #geodata
Кодирование через хексагоны стало популярным относительно недавно, авторы используют библиотеку H3 [2] от Uber.
Подход любопытный, благо в Dateno у нас миллионы датасетов с геоданными и было бы любопытно разметить их по хексагонам. Очень любопытно.
Сам проект worldex с открытым кодом [3], хранят данные в PostGIS и Elasticsearch.
Жаль не удалось найти код конвейеров данных по геокодированию в H3, но и без него такое можно повторить.
Ссылки:
[1] https://worldex.org
[2] https://h3geo.org
[3] https://github.com/worldbank/worldex
#opendata #data #search #datasearch #datacatalogs #dataviz #geodata
Forwarded from Open Data Armenia
Для тех кто ищет данные об Армении в мире, обновился поисковый индекс проекта Dateno [1] и теперь он включает более 25 тысяч наборов данных о стране, большая часть данных это статистические индикаторы Всемирного банка, ВТО, Банка международных расчётов и других. А также иные статистические показатели и геоданные.
Ещё можно найти немало датасетов с упоминанием Еревана [2] как крупнейшего города страны
А также тысячи наборов данных доступны при поиске по слову Armenia [3], но иногда возникают пересечения с одноимённым городом в Колумбии [4]🇨🇴
Dateno доступен через веб интерфейс и через API, получить ключ можно после регистрации и проверить его с помощью утилиты командной строки [5].
P.S. Основатели Open Data Armenia также являются основателями Dateno, данные по Армении можно будет использовать на хакатонах по открытым данным, а самые интересные датасеты мы будем копировать на портал открытых данных Open Data Armenia.
Ссылки:
[1] https://dateno.io/search?refinementList%5Bsource.countries.name%5D%5B0%5D=Armenia
[2] https://dateno.io/search?query=Yerevan
[3] https://dateno.io/search?query=Armenia
[4] https://en.wikipedia.org/wiki/Armenia,_Colombia
[5] https://github.com/datenoio/datenocmd
#opendata #data #armenia #datasearch
Ещё можно найти немало датасетов с упоминанием Еревана [2] как крупнейшего города страны
А также тысячи наборов данных доступны при поиске по слову Armenia [3], но иногда возникают пересечения с одноимённым городом в Колумбии [4]🇨🇴
Dateno доступен через веб интерфейс и через API, получить ключ можно после регистрации и проверить его с помощью утилиты командной строки [5].
P.S. Основатели Open Data Armenia также являются основателями Dateno, данные по Армении можно будет использовать на хакатонах по открытым данным, а самые интересные датасеты мы будем копировать на портал открытых данных Open Data Armenia.
Ссылки:
[1] https://dateno.io/search?refinementList%5Bsource.countries.name%5D%5B0%5D=Armenia
[2] https://dateno.io/search?query=Yerevan
[3] https://dateno.io/search?query=Armenia
[4] https://en.wikipedia.org/wiki/Armenia,_Colombia
[5] https://github.com/datenoio/datenocmd
#opendata #data #armenia #datasearch
Написал краткий обзор новых возможностей [1] в Dateno, включая открытую статистику, расширенный поисковый индексы, фасеты и API.
Лонгриды буду и далее разворачивать на Substack на русском языке, а на английском языке на Medium [2]
Ссылки:
[1] https://open.substack.com/pub/begtin/p/dateno?r=7f8e7&utm_campaign=post&utm_medium=web&showWelcomeOnShare=true
[2] https://medium.com/@ibegtin/just-recently-we-updated-our-dateno-dataset-search-dateno-io-065276450829
#opendata #datasearch #dateno #datadiscovery
Лонгриды буду и далее разворачивать на Substack на русском языке, а на английском языке на Medium [2]
Ссылки:
[1] https://open.substack.com/pub/begtin/p/dateno?r=7f8e7&utm_campaign=post&utm_medium=web&showWelcomeOnShare=true
[2] https://medium.com/@ibegtin/just-recently-we-updated-our-dateno-dataset-search-dateno-io-065276450829
#opendata #datasearch #dateno #datadiscovery
Ivan’s Begtin Newsletter on digital, open and preserved government
Обновления в Dateno
Статистика, API, новые фасеты и ещё больше данных.
Лично я постоянно ищу какие есть поисковики по данным, глобальные и национальные, а недавно обнаружил что оказывается такой поисковик есть у правительства Шотландии find.data.gov.scot и по многим параметрам он напоминает Dateno, что хорошо😜, но тысячу раз меньше поэтому не конкурент😂.
Итак, в Шотландии пр-во достаточно давно планирует осуществить открытие портала открытых данных data.gov.scot, но пока они этого не сделали они пошли по австралийскому пути создания национального поисковика по данным.
Всего на портале на главной странице декларируется что присутствует 17 тысяч датасетов, а на странице поиска только 11 тысяч. Метаданные о них собираются из примерно 60 источников данных (data hosts) через парсеры нескольких видов API.
Что мне нравится, ребята явно идут нашим путём и проанализировали не меньше пары сотен источников данных, систематизировали их API, идентифицировали ПО некоторых каталогов данных о которых я не знал (MetadataWorks, USmart и др.), но при этом про наш каталог Dateno registry явно не знали. Плюс у них в источниках данных многое что каталогами данных назвать нельзя, публикации файлов отдельными ведомствами, но для сбора датасетов на региональном уровне явно полезно..
В итоге поисковик у них получается, на самом деле, не совсем поисковик, поскольку у каждого датасета есть веб страница с метаданными.
Из всего что я видел - это, пока, наибольшее приближение к подходу в Dateno, за исключением, масштаба, конечно.
Если делать внутристрановой поисковик по данным то на их проект стоит обратить внимание. Они явно писали HTML парсеры под разделы статистики на многих сайтах и значительная часть датасетов там - это PDF файлы статистики нескольких инспекций.
В любом случае любопытно, в том числе как референсные оценки числа датасетов в Шотландии. В Dateno их сейчас около 8 тысяч, в этом местном поисковике их около 11 тысяч. Есть куда стремиться 🛠
#opendata #scotland #datasets #data #datasearch #dateno
Итак, в Шотландии пр-во достаточно давно планирует осуществить открытие портала открытых данных data.gov.scot, но пока они этого не сделали они пошли по австралийскому пути создания национального поисковика по данным.
Всего на портале на главной странице декларируется что присутствует 17 тысяч датасетов, а на странице поиска только 11 тысяч. Метаданные о них собираются из примерно 60 источников данных (data hosts) через парсеры нескольких видов API.
Что мне нравится, ребята явно идут нашим путём и проанализировали не меньше пары сотен источников данных, систематизировали их API, идентифицировали ПО некоторых каталогов данных о которых я не знал (MetadataWorks, USmart и др.), но при этом про наш каталог Dateno registry явно не знали. Плюс у них в источниках данных многое что каталогами данных назвать нельзя, публикации файлов отдельными ведомствами, но для сбора датасетов на региональном уровне явно полезно..
В итоге поисковик у них получается, на самом деле, не совсем поисковик, поскольку у каждого датасета есть веб страница с метаданными.
Из всего что я видел - это, пока, наибольшее приближение к подходу в Dateno, за исключением, масштаба, конечно.
Если делать внутристрановой поисковик по данным то на их проект стоит обратить внимание. Они явно писали HTML парсеры под разделы статистики на многих сайтах и значительная часть датасетов там - это PDF файлы статистики нескольких инспекций.
В любом случае любопытно, в том числе как референсные оценки числа датасетов в Шотландии. В Dateno их сейчас около 8 тысяч, в этом местном поисковике их около 11 тысяч. Есть куда стремиться 🛠
#opendata #scotland #datasets #data #datasearch #dateno
К вопросу о том как и где искать данные, в качестве регулярного напоминания:
Поисковые системы по данным
- Dateno - поисковая система по всем видам наборов данных, геоданных и научных данных, агрегирует их из более чем 5 тысяч каталогов данных, включает 19 миллионов карточек датасетов
- Google Dataset Search - исследовательская поисковая система по датасетам от Google. Охватывает все датасеты в мире опубликованные по стандарту Schema.org Dataset, включает около 50 миллионов карточек датасетов
Поисковые системы по научным данным
- DataCite Commons - поисковик по всем датасетам которым присвоен DOI через сервис DataCite. Более 22 миллионов карточек наборов данных. Используется многими другими поисковыми системами и агрегаторами наборов данных. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- OpenAIRE - поисковая система ЕС по результатам научной деятельности включая датасеты. Около 19 миллионов карточек датасетов. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- BASE (Bielefeld Academic Search Engine) - поисковая система по научным публикациям от Bielefeld University. Включает 25 миллионов карточек датасетов из которых 22 миллиона агргеггируются из DataCite. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- Mendeley Data - поисковик по научным данным от Elsevier, декларирует 26 миллионов карточек датасетов, в реальности многие из низ - это фрагменты единых баз данных или документы в университетских библиотеках. За их исключением реальное число наборов данных ближе к 5 миллионам. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
Платформы и крупнейшие порталы научных данных
- Figshare - одна из крупнейших онлайн платформ для публикации научных данных. Содержит всего 2 миллиона наборов данных включая сами данные. Более половины этих наборов данных происходят из публикаций в рамках Public Library of Science (PLOS).
- OSF - открытая платформа для публикации научных данных. Точное число датасетов измерить сложно поскольку открытой статистики, или нет, или до неё сложно добраться, но можно исходить из того что это как минимум сотни тысяч наборов данных
- DataOne - каталог и агрегатор данных наук о земле. Более 777 тысяч наборов данных, включая все ресурсы/файлы к ним приложенные
Поисковики по геоданным
- GeoSeer - чуть ли не единственный специализированный поисковик по геоданным. Обещают что охватывают 3.5 миллионов точек подключения к гео API таким как WMS, WFS, WMTS и др.
P.S. Существует также большое число крупных порталов данных и агрегаторов в других областях: машинное обучение, статистика, геоданные. О них в следующий раз
#opendata #data #datasearch #datasets #geodata #openaccess
Поисковые системы по данным
- Dateno - поисковая система по всем видам наборов данных, геоданных и научных данных, агрегирует их из более чем 5 тысяч каталогов данных, включает 19 миллионов карточек датасетов
- Google Dataset Search - исследовательская поисковая система по датасетам от Google. Охватывает все датасеты в мире опубликованные по стандарту Schema.org Dataset, включает около 50 миллионов карточек датасетов
Поисковые системы по научным данным
- DataCite Commons - поисковик по всем датасетам которым присвоен DOI через сервис DataCite. Более 22 миллионов карточек наборов данных. Используется многими другими поисковыми системами и агрегаторами наборов данных. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- OpenAIRE - поисковая система ЕС по результатам научной деятельности включая датасеты. Около 19 миллионов карточек датасетов. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- BASE (Bielefeld Academic Search Engine) - поисковая система по научным публикациям от Bielefeld University. Включает 25 миллионов карточек датасетов из которых 22 миллиона агргеггируются из DataCite. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
- Mendeley Data - поисковик по научным данным от Elsevier, декларирует 26 миллионов карточек датасетов, в реальности многие из низ - это фрагменты единых баз данных или документы в университетских библиотеках. За их исключением реальное число наборов данных ближе к 5 миллионам. Содержит только ссылки на оригинальные публикации, но не ссылки на связанные файлы ресурсов.
Платформы и крупнейшие порталы научных данных
- Figshare - одна из крупнейших онлайн платформ для публикации научных данных. Содержит всего 2 миллиона наборов данных включая сами данные. Более половины этих наборов данных происходят из публикаций в рамках Public Library of Science (PLOS).
- OSF - открытая платформа для публикации научных данных. Точное число датасетов измерить сложно поскольку открытой статистики, или нет, или до неё сложно добраться, но можно исходить из того что это как минимум сотни тысяч наборов данных
- DataOne - каталог и агрегатор данных наук о земле. Более 777 тысяч наборов данных, включая все ресурсы/файлы к ним приложенные
Поисковики по геоданным
- GeoSeer - чуть ли не единственный специализированный поисковик по геоданным. Обещают что охватывают 3.5 миллионов точек подключения к гео API таким как WMS, WFS, WMTS и др.
P.S. Существует также большое число крупных порталов данных и агрегаторов в других областях: машинное обучение, статистика, геоданные. О них в следующий раз
#opendata #data #datasearch #datasets #geodata #openaccess
Продолжая тему данных о климате и наблюдении за океанами и морями, проект SeaDataNet [1] пан-Европейская инициатива по упрощению доступа к данным морских исследований. Включает поиск по более чем 3 миллионам наборам данных [2] которые являются пробами, наблюдениями и так далее.
Большая часть данных происходит из Франции, более 1.1 миллиона записей, но много данных и из России, порядка 182 тысяч записей.
Данные есть из практически всех европейских и многих околоевропейских стран с выходом к морю. Поэтому данные, к примеру, из Грузии есть, а из Армении нет.
Почти все данные под лицензией Creative Commons, но для доступа нужна регистрация.
Это другой пример очень специфических отраслевых данных, можно обратить внимание что поиск по ним по собственным уникальным фильтрам таким как: морской регион, координаты, научная дисциплина, способ получения данных и так далее.
Привязка данных связана скорее с географическим положением, чем с административными границами.
Ссылки:
[1] https://www.seadatanet.org/
[2] https://cdi.seadatanet.org/search
#opendata #climate #oceans #europe #datacatalogs #datasearch
Большая часть данных происходит из Франции, более 1.1 миллиона записей, но много данных и из России, порядка 182 тысяч записей.
Данные есть из практически всех европейских и многих околоевропейских стран с выходом к морю. Поэтому данные, к примеру, из Грузии есть, а из Армении нет.
Почти все данные под лицензией Creative Commons, но для доступа нужна регистрация.
Это другой пример очень специфических отраслевых данных, можно обратить внимание что поиск по ним по собственным уникальным фильтрам таким как: морской регион, координаты, научная дисциплина, способ получения данных и так далее.
Привязка данных связана скорее с географическим положением, чем с административными границами.
Ссылки:
[1] https://www.seadatanet.org/
[2] https://cdi.seadatanet.org/search
#opendata #climate #oceans #europe #datacatalogs #datasearch