Ключевые аспекты исследования:
Роль таламуса в сознательном восприятии: Таламус, расположенный в центре мозга, участвует в обработке сенсорной информации и рабочей памяти. Ранее его роль в сознательном восприятии была предположительной; данное исследование предоставляет прямые доказательства его участия.
Методология: Участники, проходившие лечение от хронических головных болей с использованием глубоко имплантированных электродов, выполняли задания, требующие фиксации взгляда в зависимости от того, замечали ли они появление определенного значка на экране.
Это позволило исследователям записывать нейронную активность в таламусе и коре головного мозга во время осознания или неосознания стимула.
Участникам показывали иконку на экране таким образом, что они замечали (осознавали) ее появление только примерно в половине случаев. В это время исследователи одновременно записывали активность как из глубоких структур (таламуса), так и из коры головного мозга.
Выводы: Результаты показали, что активность в высокоуровневых ядрах таламуса тесно связана с состояниями сознания, подтверждая его роль в фильтрации и передаче информации, которая становится осознанной.
Это исследование расширяет понимание нейронных механизмов сознания, подчеркивая важность глубоких структур мозга, таких как таламус, в процессах осознания.
Работа позволяет изучить временные взаимосвязи (тайминг) активации между таламусом и корой, что критически важно для понимания того, как эти области взаимодействуют для порождения сознательного опыта. Это помогает строить более полные теории сознания, выходящие за рамки одной лишь коры.
@ai_machinelearning_big_data
#brain #science #nature
Please open Telegram to view this post
VIEW IN TELEGRAM
❤43👍37🔥19❤🔥3🥱1
🪰 Виртуальная дрозофила: зачем DeepMind «оживили» плодовую мушку — и что это даёт науке
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
🌟 Как это сделали:
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
✔️ Зачем это нужно
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
🔥 Что это даёт
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
✔️ Посмотреть код, скомпилировать модель и погонять виртуальную мушку можно уже сейчас:
🔜 GitHub
🔜 Статья в Nature
@ai_machinelearning_big_data
#DeepMind #nature #science
Кратко: исследователи создали самую точную на сегодня цифровую модель Drosophila melanogaster
.
Она умеет ходить, летать и ориентироваться в пространстве. Её «тело» рассчитано в физическом движке MuJoCo, а «мозг» — нейросеть, обученная на реальных видеозаписях поведения мух.
1) Физика тела
Исследователи запрограммировали 52 степени свободы суставов, добавили моделирование аэродинамики крыльев и «клейких» лапок-актуаторов, имитирующих силу сцепления с поверхностью.
Источник: Nature
2) Нейроконтроль
Нейросеть обучалась на сотнях видеозаписей реальных траекторий и затем управляла виртуальной мухой в MuJoCo, выбирая, как двигать крыльями и лапками в каждый момент.
3) Зрение
Виртуальные фасеточные глаза передают изображение контроллеру: модель может следовать по заданной траектории и корректировать курс по ходу движения.
4) Открытый код
Весь проект опубликован на GitHub (flybody) под лицензией Apache-2.0 — можно запускать симулятор, писать собственных агентов и экспериментировать с поведением мухи.
▪️ Нейронаука без электродов.
Модель — это «песочница», в которой можно виртуально перерезать нервы, добавлять шум, менять форму крыла и мгновенно видеть, как это влияет на поведение. Такие эксперименты на живых организмах часто невозможны.
▪️ Тест-полигон для ИИ и робототехники.
Готовая референс-модель движений и сенсорики, вдохновлённая природой — идеальна для обучения автономных систем.
▪️ От мушки к зебре — и дальше.
Методика уже применяется к виртуальным грызунам, а следующим объектом станет зебра-данио (у неё 70 % белков кодируются теми же генами, что у человека). Это даёт уникальную возможность изучить, как мозг приспосабливается к различной морфологии тела — не выходя из симулятора.
Источник: Janelia Research Campus
▪️ Исследователи получают бесплатный инструмент для быстрой проверки гипотез о связке «нейроны → движение».
▪️ Робототехники — возможность адаптировать природные механизмы управления и баланса.
▪️ Для нас— ещё один пример того, как ИИ позволяет разбирать живые системы на компоненты, не причиняя вреда природе.
@ai_machinelearning_big_data
#DeepMind #nature #science
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤78🔥48👍25🤔12👌2❤🔥1🤨1
🧠 Учёные разработали мозговой интерфейс, который переводит мысли в речь с интонацией
Свежая статья в *Nature* описывает, как человек с параличом получил голос благодаря нейроимпланту.
Устройство считывает активность мозга и синтезирует речь со скоростью 40–60 слов/мин и точностью воспроизведения более 60 %.
📍 Как это работает:
— В мозг имплантированы 256 микродатчиков в вентральную двигательную префронтальную извилину — зону, отвечающую за речь
— Нейросеть расшифровывает активность речевой зоны
— Голос синтезируется мгновенно (~25 мс задержки)
— Человек *слышит* свой голос и может менять интонацию, задавать вопросы и даже петь
💬 Важно:
Это не просто текст. Это живая речь с эмоциями, восстановленная у человека, полностью утратившего возможность говорить.
Перспективная технология для всех, кто потерял голос.
📌 Полная статья
@ai_machinelearning_big_data
#ml #ai #brain #nature
Свежая статья в *Nature* описывает, как человек с параличом получил голос благодаря нейроимпланту.
Устройство считывает активность мозга и синтезирует речь со скоростью 40–60 слов/мин и точностью воспроизведения более 60 %.
📍 Как это работает:
— В мозг имплантированы 256 микродатчиков в вентральную двигательную префронтальную извилину — зону, отвечающую за речь
— Нейросеть расшифровывает активность речевой зоны
— Голос синтезируется мгновенно (~25 мс задержки)
— Человек *слышит* свой голос и может менять интонацию, задавать вопросы и даже петь
💬 Важно:
Это не просто текст. Это живая речь с эмоциями, восстановленная у человека, полностью утратившего возможность говорить.
Перспективная технология для всех, кто потерял голос.
📌 Полная статья
@ai_machinelearning_big_data
#ml #ai #brain #nature
❤174👍65🔥43😨9😁5⚡2🤔2🤨2