227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥 Apple только что выпустила LLM с открытым исходным кодом 7B, весами, кодом и набором данных! 👀

TL;DR:
🧠 Базовая модель 7B, обученная на 2,5Т токенах Данные в основном на английском языке, контекстное окно 2048. Обучена полностью на открытых данных.

Объединенные данные DCLM-BASELINE, StarCoder и ProofPile2
MMLU 0.6372 > Mistral & < Llama3
Открытая лицензия с лицензией Apple
Соответствует моделям с закрытыми наборами данных, таким как Mistral
Обучен с использованием Python и OpenLM framework
Доступно на huggingface и в Transformers

Модель: https://huggingface.co/apple/DCLM-7B
Репозиторий: https://github.com/mlfoundations/dclm
Набор данных: https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
Документация: https://arxiv.org/abs/2406.11794

@ai_machinelearning_big_data

#LLM #ML #Apple
👍36🔥127
⚡️ ml_mdm: Набор диффузионных моделей Matryoshka от Apple.

Matryoshka (MDM) - сквозная структура для синтеза изображений и видео высокого разрешения. Вместо обучения отдельных моделей использован многомасштабный процесс совместной диффузии, в котором модели меньшего масштаба вложены в модели большего масштаба. Такая структура вложенности не только облегчает обмен свойствами между масштабами, но и обеспечивает постепенный рост обучаемой архитектуры.

ml_mdm - Python-фреймворк для синтеза изображений и видео c с помощью набора pre-trained моделей Matryoshka.

Codebase фреймворка:

🟠ml_mdm.models - реализация core-модели;
🟠ml_mdm.diffusion - диффузионный пайплайн;
🟠ml_mdm.config - подключение конфигурационных классов данных к моделям, конвейерам с помощью simple parsing (надстройка к argparse);
🟠ml_mdm.clis - все инструменты cli проекта.

Для тестирования инференса, оценки на датасете CC12M и обучении на собственных наборах изображений представлены 3 pre-trained модели, построенные на архитектурах U-Net и Nested U-Nets, обученные на 50 млн. пар "текст-изображение" с Flickr:

🟢vis_model_64x64;
🟢vis_model_256x256;
🟢vis_model_1024x1024.

▶️Локальный запуск:

Зависимости для установки по умолчанию в файле pyproject.toml выбраны таким образом, чтобы можно было установить библиотеку даже на CPU-only систему.

#  Running Test Cases:
> pytest # will run all test cases - including ones that require a gpu
> pytest -m "not gpu" # run test cases that can work with just cpu

# Download the models:
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr64/vis_model.pth --output vis_model_64x64.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr256/vis_model.pth --output vis_model_256x256.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr1024/vis_model.pth --output vis_model_1024x1024.pth

# Launch Web Demo:
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_sample.py --port 19999


⚠️ В Issues репозитория есть обращение о некорректной команде запуска Web Demo. Следите за обновлением тикета и коммитами.


📌Лицензирование :  Apple Inc.


🟡Arxiv
🟡Страница проекта
🖥Github [ Stars: 166 | Issues: 3 | Forks: 6]


@ai_machinelearning_big_data

#AI #Diffusion #ML #Text2Image #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍198🥰4
⚡️ Apple Depth Pro: Карта глубина с расчетом фокусного расстояния менее чем за секунду.

Depth Pro - базовая модель для метрической монокулярной оценки глубины по по одному изображению в режиме zero-shot. Она позволяет синтезировать Hi-Res карты глубины с высокой точностью определения границ объектов, воспроизводя их форму, расположение и абсолютный масштаб без использования метаданных камеры.

Архитектура модели основана на применении энкодеров ViT к фрагментам изображения, извлеченным в нескольких масштабах.

Используются два кодировщика ViT: фрагментный энкодер, обрабатывающий блоки изображения для изучения масштабно-инвариантных представлений и энкодер изображения, фиксирующий предсказания в глобальном контексте.

Модель работает с фиксированным разрешением 1536x1536 пикселей, а каждый из модулей ViT - 384x384 пикселей.

Для обучения используются 5 целевых функций (LMAE, LMSE, LMAGE, LMALE и LMSGE ) на основе канонической обратной глубины и применяется двухэтапный план обучения. Набор данных состоит из 43 датасетов.

Первый этап учит обобщающим признакам, основанным на смеси реальных и синтетических данных, а второй — повышению резкости границ на синтетических данных с точной информацией о глубине.

Модель показала высокую точность на различных наборах данных (Booster, ETH3D, Middlebury, nuScenes, Sintel и Sun-RGBD91011) .

Depth Pro превзошла другие методы по точности оценки фокусного расстояния на наборах данных DDDP, FiveK, PPR10K, RAISE, SPAQ и ZOOM.

Скорость инференса, замеренная в тестировании - 0,3 секунды на генерацию карты глубины 2,25-мегапиксельного изображения.

▶️ Локальная установка и инференс в CLI или Python:

# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .

# Download pretrained checkpoints:
source get_pretrained_models.sh

# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg

# Running from python
from PIL import Image
import depth_pro

model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.



📌Лицензирование : Apple Sample Code license.



🟡Модель
🟡Demo
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ViT #Depth #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥39👍187🥰1
🍏 MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training

Apple выпустила невероятно быстрые модели Core ML и приложение для iOS, позволяющее запускать их на iPhone!

Эти модели можно подключить к демо приложению, представленному в официальном репозитории MobileCLIP.

> S0 соответствует ViT-B/ 16 от OpenAI, но в 4,8 раза быстрее и в 2,8 раза меньше размером.

> S2 превосходит ViT-B/16 от SigLIP в 2,3 раза, при этом в 2,1 раза меньше по размеру, при этом используется для обучения в 3 раза меньше данных.

> MobileCLIP-B(LT) достигает 77,2%-ную точность обработки изображений, превосходя DFN, SigLIP и даже ViT-L/14@336 от OpenAI

conda create -n clipenv python=3.10
conda activate clipenv
pip install -e .


Пример использования:

Python
import torch
from PIL import Image
import mobileclip

model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='/path/to/mobileclip_s0.pt')
tokenizer = mobileclip.get_tokenizer('mobileclip_s0')

image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])

with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)

text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)

print("Label probs:", text_probs)



HF
Github
Результаты модели

@ai_machinelearning_big_data

#apple #coreml #mobile
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥116
🌟 AIMV2: набор визуальных энкодеров от Apple.

AIMV2 – семейство моделей визуальных энкодеров, предварительно обученных с помощью мультимодальной авторегрессионной цели, которая восстанавливает фрагменты изображений и текстовые токены, что, в итоге, позволяет AIMV2 справляться с задачами распознавания изображений, локализации объектов и мультимодального понимания.

Архитектура AIMV2 основана на ViT и использует каузальный мультимодальный декодер, который сначала регрессирует фрагменты изображения, а затем декодирует текстовые токены авторегрессионно. Визуальный энкодер использует префиксное внимание, что позволяет использовать двунаправленное внимание во время вывода без дополнительной настройки.

Семейство AIMV2 обучалось на комбинации общедоступных (DFN-2B, COYO) и собственных (HQITP) датасетов, содержащих пары "изображение-текст" и синтетические аннотации, сгенерированные предварительно обученным инструментом.

Эксперименты после обучения показали, что AIMV2-3B достигает точности 89,5% на ImageNet с замороженным транком, что лучше, чем у генеративных методов MAE и AIM. AIMV2 превосходит CLIP и SigLIP в большинстве тестов на мультимодальное понимание.

Модель совместима с LiT для zero-shot распознавания и может быть настроена для обработки изображений с различными разрешениями и соотношениями сторон.

В отрытый доступ на HF опубликованы модели:

🟠AIMv2 в разрешении 224px: 4 модели с количеством параметров - 0.3B, 0.6B, 1.2B и 2.7B

🟠AIMv2 в разрешении 336px: 4 модели с количеством параметров - 0.3B, 0.6B, 1.2B и 2.7B

🟠AIMv2 в разрешении 448px: 4 модели с количеством параметров - 0.3B, 0.6B, 1.2B и 2.7B

🟢AIMv2 в Native разрешении : aimv2-large-patch14-native c 0.3B (разрешение в диапазоне от 112 до 4096)

🟢AIMv2 distilled ViT-Large (модели, которые были получены путем дистилляции из AIMV2-3B в архитектуру ViT-Large) : AIMv2-L и AIMv2-L-distilled.

🟠Zero-shot Adapted AIMv2 (модель после LiT- тюнинга): AIMv2-L с 0.3B параметров.


⚠️ ! Примеры инференса с JAX и MLX доступны в репозитории AIMv2

▶️Установка и локальный инференс c Pytorch:

# Clone the repository
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'

# Example Using PyTorch
from PIL import Image

from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms

img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)

inp = transform(img).unsqueeze(0)
features = model(inp)


📌Лицензирование: Apple Sample Code License.


🟡Коллекция на HF
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Vision #Apple #AIMv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥87
🍏 Apple представила чип M3 Ultra – самый быстрый процессор, когда-либо созданный для Mac.

Новый M3 Ultra дебютировал в Mac Studio и сочетает в себе 32-ядерный CPU (из которых 24 – высокопроизводительные, а 8 – энергоэффективные) с 80-ядерным GPU и поддержкой до 512 ГБ🔥

Этого хватит для 4-битного Deep Seek R1 и еще останется место.

По заявлениям Apple, этот чип работает в 1,5 раза быстрее, чем M2 Ultra, и на 1,8 раза быстрее, чем M1 Ultra.

Цены на M4 Max начинаются в США с $2000 до уплаты налогов. За эти деньги вы получите 36 ГБ объединённой памяти и SSD на 512 ГБ.

А вот M3 Ultra начинается с $4000. Внутри 96 ГБ объединённой памяти и SSD на 1 ТБ.

С M4 удалось добиться таких результатов:
► обработка изображений в Adobe Photoshop в 1,6 раза быстрее в сравнении с Mac Studio с M1 Max и до 2,9 раз быстрее по сравнению с 27-дюймовым iMac с Core i9

► до 2,1 раза выше производительность сборки при компиляции кода в Xcode по сравнению с Mac Studio с M1 Max и до 3,1 раза быстрее по сравнению с 27-дюймовым iMac с Core i9

► производительность ProRes в Compressor до 1,2 раза выше по сравнению с Mac Studio с M1 Max и до 2,8 раз быстрее по сравнению с 27-дюймовым iMac с Core i9

► производительность обработки видео в Topaz Video AI до 1,6 раз выше по сравнению с Mac Studio с M1 Max и до 5 раз быстрее по сравнению с 27-дюймовым iMac с Core i9

С M3 Ultra удалось добиться таких результатов:
► до 16,9 раз быстрее генерация токенов с использованием LLM с сотнями миллиардов параметров в LM Studio по сравнению с Mac Studio с M1 Ultra

► рендеринг сцены до 2,6 раза быстрее в Maxon Redshift по сравнению с Mac Studio с M1 Ultra и до 6,4 раза быстрее по сравнению с 16-ядерным Mac Pro на базе Intel с Radeon Pro W5700X

► до 1,4 раза выше производительность рендеринга видео 8K в Final Cut Pro по сравнению с Mac Studio с M1 Ultra и до 4 раз выше по сравнению с 16-ядерным Mac Pro на базе Intel с Radeon Pro W5700X

@ai_machinelearning_big_data


#apple #Mac #M3Ultra #M4Max
Please open Telegram to view this post
VIEW IN TELEGRAM
78👍26🔥11🤣11🥱7🤷‍♂6😁1👌1
🍏🖥 Джони Айв сотрудничает с OpenAI: новое ИИ-устройство «Her-device» в процессе создания

В последние недели OpenAI вела переговоры о приобретении стартапа по производству оборудования io Products — совместного проекта Джони Айва (бывший главный директор по дизайну компании AppleСэма Альтмана по разработке персонального устройства с поддержкой ИИ.

Обсуждалась цена покупки более

500 миллионов долларов. Предполагается, что устройство не будет иметь экрана и будет управляться голосом — как в научно-фантастических фильмах.

В качестве альтернативы также обсуждается партнерство.

Цель проекта — более тесная интеграция ИИ в повседневную жизнь. Проект может поставить OpenAI в прямую конкуренцию с Apple.

🔗 Новость

@ai_machinelearning_big_data


#openai #apple
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥1712😎5🙈4
🌟 CoMotion: одновременное отслеживание движения нескольких людей в видео.

CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.

CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой tracking by attention позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.

Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели ConvNextV2. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.

Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).

Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.

Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.

▶️Локальный инференс:

# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion

# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion

# Install dependencies
pip install -e

# Download models
bash get_pretrained_models.sh

# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/


📌Лицензирование: Apple License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4119🔥11
⚡️ Matrix3D: универсальная модель для фотограмметрии от Apple.

Matrix3D — модель, предлагающая решение сразу нескольких задач в рамках единой архитектуры: оценку положения камер, предсказание глубины и генерацию новых ракурсов.

Всю эту красоту обеспечивает модифицированный диффузионный трансформер, который обрабатывает изображения, параметры камер и карты глубины как взаимосвязанные модальности. Он не только упрощает традиционный пайплайн (нет зависимостей от отдельных алгоритмов SfM или MVS), но и повышает точность за счет уникальной оптимизации.

Ключевая особенность Matrix3D — маскированное обучение, позаимствованное из методов MAE. Модель тренируется на частично заполненных данных: парах «изображение-поза» или «изображение-глубина». При этом модель учится «достраивать» недостающие модальности, что позволяет комбинировать входы и выходы во время инференса. Например, можно добавить карту глубины с физического датчика или сгенерировать новые ракурсы на основе всего двух изображений.

Результаты тестов с задачей оценки поз на датасете CO3D Matrix3D обходят специализированные методы (RayDiffusion): точность определения положения камеры достигает 96,3% против 92,4% у конкурентов.

В синтезе видов модель демонстрирует PSNR 20,45 против 19,22 у SyncDreamer, а в оценке глубины — AbsRel 0,036 против 0,064 у Metric3D. При этом Matrix3D не требует отдельных моделей для каждой задачи, все решается в рамках одной модели.

Практическая ценность модели — в ее адаптивности. Например, для 3D-реконструкции из одного кадра Matrix3D сначала генерирует недостающие ракурсы, оценивает их позы и глубину, а затем оптимизирует сцену через 3D Gaussian Splatting.

Для работы с несколькими кадрами без известных поз модель сама восстанавливает параметры камер, что раньше требовало отдельного этапа с COLMAP. Все это реализовано в репозитории с готовыми скриптами — от синтеза видов до полной реконструкции.

Конечно, есть нюансы: качество облаков точек пока уступает другим методам (GeoMVSNet). Но даже имеющиеся результаты достаточны для инициализации 3DGS, а главное — весь процесс занимает несколько минут на одной RTX 3090. Для сравнения: CAT3D, хотя и точнее в синтезе, требует 16х A100 и оптимизации под каждую сцену.


🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Photogrammetry #Matrix3D #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56🔥3019🤣4🍓2
🍏Иллюзия мышления: понимание сильных и слабых сторон моделей рассуждения через призму сложности задач

Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.

📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями

И всё это — с усложнением.

💥 Результаты:

🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.

🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.

🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.

🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.

🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.

🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔

📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

@data_analysis_ml

#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
62👍47🔥19🤣13😢1🙈1
🌟 FlexTok: адаптивная 1D-токенизация изображений от Apple.

FlexTok - метод токенизации изображений, который преобразует 2D-изображения в упорядоченные 1D-последовательности переменной длины.

Его цель - сократить объем данных, необходимых для обучения генеративных моделей, и при этом оставить достаточную информацию для качественной реконструкции и генерации.

В отличие от традиционных подходов, где число токенов фиксировано и зависит только от размера изображения, FlexTok подстраивается под сложность контента: простейшая сцена может кодироваться несколькими токенами, а сложная - десятками и сотнями .

FlexTok, это по сути, пайплайн из 3 компонентов: ViT‑энкодер, квантование регистров и маскирование внимания:

ViT‑энкодер с набором «регистровых» токенов читает латентные представления VAE‑GAN и конденсирует их в 1D-последовательность до 256 регистров .

Затем, с помощью FSQ‑квантования, каждый регистр дискретизируется в код из заранее определенного словаря размером ~64 000.
На этом этапе применяется "nested dropout": во время обучения случайно обрезаются последние токены, чтобы модель научилась упорядочивать информацию от грубых форм к деталям.

Параллельно применяется авторегрессионная маска внимания: каждый токен в цепочке видит только те, что были до него, и не знает о тех, что идут после. Это заставляет модель генерировать изображения шаг за шагом, от первого токена к последнему, и упрощает ей задачу прогнозирования следующих элементов.

Декодер в FlexTok - это модель rectified flow, которая на вход берет укороченные токены и слегка зашумленные латенты VAE и учится предсказывать тот шум, который нужно убрать, чтобы вернуть исходное представление.

Чтобы обучение шло быстрее и давало более точные результаты, добавляют REPA‑Loss: он сравнивает промежуточные признаки с векторами из DINOv2‑L. Благодаря этому даже при очень жесткой компрессии (от 1 до 256 токенов), FlexTok успешно восстанавливает детали изображения.

FlexTok легко встраивается в текстово‑ориентированные модели и может улучшить соответствие изображения описанию, даже если число токенов меняется. К тому же его адаптивная токенизация применима не только к картинкам, но и к аудио или видео.

▶️Набор токенизаторов:

🟢Flextok_d12_d12_in1k - 12\12 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d18_in1k - 18\18 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_in1k - 18\28 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_dfm - 18\28 слоев энкодер-декодер, датасет DFN.

▶️ VAE:

🟠Flextok_vae_c4 - 4 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c8 - 8 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c16 - 16 каналов латента, коэффициент понижающей дискретизации 8.


🟡Страница проекта
🟡Набор на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Tokenizer #Flextok #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4113👍11🥰3
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман

По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.

Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.

Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.

📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов

Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.

#Apple #Mistral #AI #LLM #ГонкаИИ

@machinelearning_interview
112👍88🔥38😁24🥱14😢10🤔9🗿5❤‍🔥2👏2