🔥 Apple только что выпустила LLM с открытым исходным кодом 7B, весами, кодом и набором данных! 👀
TL;DR:
🧠 Базовая модель 7B, обученная на 2,5Т токенах ✅ Данные в основном на английском языке, контекстное окно 2048. Обучена полностью на открытых данных.
✅ Объединенные данные DCLM-BASELINE, StarCoder и ProofPile2
✅ MMLU 0.6372 > Mistral & < Llama3
✅ Открытая лицензия с лицензией Apple
✅ Соответствует моделям с закрытыми наборами данных, таким как Mistral
✅ Обучен с использованием Python и OpenLM framework
✅ Доступно на huggingface и в Transformers
▪Модель: https://huggingface.co/apple/DCLM-7B
▪Репозиторий: https://github.com/mlfoundations/dclm
▪Набор данных: https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
▪Документация: https://arxiv.org/abs/2406.11794
@ai_machinelearning_big_data
#LLM #ML #Apple
TL;DR:
🧠 Базовая модель 7B, обученная на 2,5Т токенах ✅ Данные в основном на английском языке, контекстное окно 2048. Обучена полностью на открытых данных.
✅ Объединенные данные DCLM-BASELINE, StarCoder и ProofPile2
✅ MMLU 0.6372 > Mistral & < Llama3
✅ Открытая лицензия с лицензией Apple
✅ Соответствует моделям с закрытыми наборами данных, таким как Mistral
✅ Обучен с использованием Python и OpenLM framework
✅ Доступно на huggingface и в Transformers
▪Модель: https://huggingface.co/apple/DCLM-7B
▪Репозиторий: https://github.com/mlfoundations/dclm
▪Набор данных: https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
▪Документация: https://arxiv.org/abs/2406.11794
@ai_machinelearning_big_data
#LLM #ML #Apple
👍36🔥12❤7
Matryoshka (MDM) - сквозная структура для синтеза изображений и видео высокого разрешения. Вместо обучения отдельных моделей использован многомасштабный процесс совместной диффузии, в котором модели меньшего масштаба вложены в модели большего масштаба. Такая структура вложенности не только облегчает обмен свойствами между масштабами, но и обеспечивает постепенный рост обучаемой архитектуры.
ml_mdm - Python-фреймворк для синтеза изображений и видео c с помощью набора pre-trained моделей Matryoshka.
Codebase фреймворка:
Для тестирования инференса, оценки на датасете CC12M и обучении на собственных наборах изображений представлены 3 pre-trained модели, построенные на архитектурах U-Net и Nested U-Nets, обученные на 50 млн. пар "текст-изображение" с Flickr:
Зависимости для установки по умолчанию в файле pyproject.toml выбраны таким образом, чтобы можно было установить библиотеку даже на CPU-only систему.
# Running Test Cases:
> pytest # will run all test cases - including ones that require a gpu
> pytest -m "not gpu" # run test cases that can work with just cpu
# Download the models:
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr64/vis_model.pth --output vis_model_64x64.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr256/vis_model.pth --output vis_model_256x256.pth
curl https://docs-assets.developer.apple.com/ml-research/models/mdm/flickr1024/vis_model.pth --output vis_model_1024x1024.pth
# Launch Web Demo:
torchrun --standalone --nproc_per_node=1 ml_mdm/clis/generate_sample.py --port 19999
⚠️ В Issues репозитория есть обращение о некорректной команде запуска Web Demo. Следите за обновлением тикета и коммитами.
@ai_machinelearning_big_data
#AI #Diffusion #ML #Text2Image #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19❤8🥰4
Depth Pro - базовая модель для метрической монокулярной оценки глубины по по одному изображению в режиме zero-shot. Она позволяет синтезировать Hi-Res карты глубины с высокой точностью определения границ объектов, воспроизводя их форму, расположение и абсолютный масштаб без использования метаданных камеры.
Архитектура модели основана на применении энкодеров ViT к фрагментам изображения, извлеченным в нескольких масштабах.
Используются два кодировщика ViT: фрагментный энкодер, обрабатывающий блоки изображения для изучения масштабно-инвариантных представлений и энкодер изображения, фиксирующий предсказания в глобальном контексте.
Модель работает с фиксированным разрешением 1536x1536 пикселей, а каждый из модулей ViT - 384x384 пикселей.
Для обучения используются 5 целевых функций (LMAE, LMSE, LMAGE, LMALE и LMSGE ) на основе канонической обратной глубины и применяется двухэтапный план обучения. Набор данных состоит из 43 датасетов.
Первый этап учит обобщающим признакам, основанным на смеси реальных и синтетических данных, а второй — повышению резкости границ на синтетических данных с точной информацией о глубине.
Модель показала высокую точность на различных наборах данных (Booster, ETH3D, Middlebury, nuScenes, Sintel и Sun-RGBD91011) .
Depth Pro превзошла другие методы по точности оценки фокусного расстояния на наборах данных DDDP, FiveK, PPR10K, RAISE, SPAQ и ZOOM.
Скорость инференса, замеренная в тестировании - 0,3 секунды на генерацию карты глубины 2,25-мегапиксельного изображения.
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.
@ai_machinelearning_big_data
#AI #ML #ViT #Depth #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥39👍18❤7🥰1
Apple выпустила невероятно быстрые модели Core ML и приложение для iOS, позволяющее запускать их на iPhone! ⚡
Эти модели можно подключить к демо приложению, представленному в официальном репозитории MobileCLIP.
> S0 соответствует ViT-B/ 16 от OpenAI, но в 4,8 раза быстрее и в 2,8 раза меньше размером.
> S2 превосходит ViT-B/16 от SigLIP в 2,3 раза, при этом в 2,1 раза меньше по размеру, при этом используется для обучения в 3 раза меньше данных.
> MobileCLIP-B(LT) достигает 77,2%-ную точность обработки изображений, превосходя DFN, SigLIP и даже ViT-L/14@336 от OpenAI
conda create -n clipenv python=3.10
conda activate clipenv
pip install -e .
Пример использования:
Python
import torch
from PIL import Image
import mobileclip
model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='/path/to/mobileclip_s0.pt')
tokenizer = mobileclip.get_tokenizer('mobileclip_s0')
image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
▪HF
▪Github
▪Результаты модели
@ai_machinelearning_big_data
#apple #coreml #mobile
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥11❤6
AIMV2 – семейство моделей визуальных энкодеров, предварительно обученных с помощью мультимодальной авторегрессионной цели, которая восстанавливает фрагменты изображений и текстовые токены, что, в итоге, позволяет AIMV2 справляться с задачами распознавания изображений, локализации объектов и мультимодального понимания.
Архитектура AIMV2 основана на ViT и использует каузальный мультимодальный декодер, который сначала регрессирует фрагменты изображения, а затем декодирует текстовые токены авторегрессионно. Визуальный энкодер использует префиксное внимание, что позволяет использовать двунаправленное внимание во время вывода без дополнительной настройки.
Семейство AIMV2 обучалось на комбинации общедоступных (DFN-2B, COYO) и собственных (HQITP) датасетов, содержащих пары "изображение-текст" и синтетические аннотации, сгенерированные предварительно обученным инструментом.
Эксперименты после обучения показали, что AIMV2-3B достигает точности 89,5% на ImageNet с замороженным транком, что лучше, чем у генеративных методов MAE и AIM. AIMV2 превосходит CLIP и SigLIP в большинстве тестов на мультимодальное понимание.
Модель совместима с LiT для zero-shot распознавания и может быть настроена для обработки изображений с различными разрешениями и соотношениями сторон.
В отрытый доступ на HF опубликованы модели:
⚠️ ! Примеры инференса с JAX и MLX доступны в репозитории AIMv2
# Clone the repository
pip install 'git+https://github.com/apple/ml-aim.git#subdirectory=aim-v2'
# Example Using PyTorch
from PIL import Image
from aim.v2.utils import load_pretrained
from aim.v1.torch.data import val_transforms
img = Image.open(...)
model = load_pretrained("aimv2-large-patch14-336", backend="torch")
transform = val_transforms(img_size=336)
inp = transform(img).unsqueeze(0)
features = model(inp)
@ai_machinelearning_big_data
#AI #ML #Vision #Apple #AIMv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥8❤7
Новый M3 Ultra дебютировал в Mac Studio и сочетает в себе 32-ядерный CPU (из которых 24 – высокопроизводительные, а 8 – энергоэффективные) с 80-ядерным GPU и поддержкой до 512 ГБ🔥
Этого хватит для 4-битного Deep Seek R1 и еще останется место.
По заявлениям Apple, этот чип работает в 1,5 раза быстрее, чем M2 Ultra, и на 1,8 раза быстрее, чем M1 Ultra.
Цены на M4 Max начинаются в США с $2000 до уплаты налогов. За эти деньги вы получите 36 ГБ объединённой памяти и SSD на 512 ГБ.
А вот M3 Ultra начинается с $4000. Внутри 96 ГБ объединённой памяти и SSD на 1 ТБ.
С M4 удалось добиться таких результатов:
► обработка изображений в Adobe Photoshop в 1,6 раза быстрее в сравнении с Mac Studio с M1 Max и до 2,9 раз быстрее по сравнению с 27-дюймовым iMac с Core i9
► до 2,1 раза выше производительность сборки при компиляции кода в Xcode по сравнению с Mac Studio с M1 Max и до 3,1 раза быстрее по сравнению с 27-дюймовым iMac с Core i9
► производительность ProRes в Compressor до 1,2 раза выше по сравнению с Mac Studio с M1 Max и до 2,8 раз быстрее по сравнению с 27-дюймовым iMac с Core i9
► производительность обработки видео в Topaz Video AI до 1,6 раз выше по сравнению с Mac Studio с M1 Max и до 5 раз быстрее по сравнению с 27-дюймовым iMac с Core i9
С M3 Ultra удалось добиться таких результатов:
► до 16,9 раз быстрее генерация токенов с использованием LLM с сотнями миллиардов параметров в LM Studio по сравнению с Mac Studio с M1 Ultra
► рендеринг сцены до 2,6 раза быстрее в Maxon Redshift по сравнению с Mac Studio с M1 Ultra и до 6,4 раза быстрее по сравнению с 16-ядерным Mac Pro на базе Intel с Radeon Pro W5700X
► до 1,4 раза выше производительность рендеринга видео 8K в Final Cut Pro по сравнению с Mac Studio с M1 Ultra и до 4 раз выше по сравнению с 16-ядерным Mac Pro на базе Intel с Radeon Pro W5700X
@ai_machinelearning_big_data
#apple #Mac #M3Ultra #M4Max
Please open Telegram to view this post
VIEW IN TELEGRAM
❤78👍26🔥11🤣11🥱7🤷♂6😁1👌1
В последние недели OpenAI вела переговоры о приобретении стартапа по производству оборудования io Products — совместного проекта Джони Айва (бывший главный директор по дизайну компании Apple)и Сэма Альтмана по разработке персонального устройства с поддержкой ИИ.
Обсуждалась цена покупки более
500 миллионов долларов. Предполагается, что устройство не будет иметь экрана и будет управляться голосом — как в научно-фантастических фильмах.
В качестве альтернативы также обсуждается партнерство.
Цель проекта — более тесная интеграция ИИ в повседневную жизнь. Проект может поставить OpenAI в прямую конкуренцию с Apple.
🔗 Новость
@ai_machinelearning_big_data
#openai #apple
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52🔥17❤12😎5🙈4
CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.
CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой
tracking by attention
позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели
ConvNextV2
. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).
Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.
Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.
# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion
# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion
# Install dependencies
pip install -e
# Download models
bash get_pretrained_models.sh
# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/
@ai_machinelearning_big_data
#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤19🔥11
Matrix3D — модель, предлагающая решение сразу нескольких задач в рамках единой архитектуры: оценку положения камер, предсказание глубины и генерацию новых ракурсов.
Всю эту красоту обеспечивает модифицированный диффузионный трансформер, который обрабатывает изображения, параметры камер и карты глубины как взаимосвязанные модальности. Он не только упрощает традиционный пайплайн (нет зависимостей от отдельных алгоритмов SfM или MVS), но и повышает точность за счет уникальной оптимизации.
Ключевая особенность Matrix3D — маскированное обучение, позаимствованное из методов MAE. Модель тренируется на частично заполненных данных: парах «изображение-поза» или «изображение-глубина». При этом модель учится «достраивать» недостающие модальности, что позволяет комбинировать входы и выходы во время инференса. Например, можно добавить карту глубины с физического датчика или сгенерировать новые ракурсы на основе всего двух изображений.
Результаты тестов с задачей оценки поз на датасете CO3D Matrix3D обходят специализированные методы (RayDiffusion): точность определения положения камеры достигает 96,3% против 92,4% у конкурентов.
В синтезе видов модель демонстрирует PSNR 20,45 против 19,22 у SyncDreamer, а в оценке глубины — AbsRel 0,036 против 0,064 у Metric3D. При этом Matrix3D не требует отдельных моделей для каждой задачи, все решается в рамках одной модели.
Практическая ценность модели — в ее адаптивности. Например, для 3D-реконструкции из одного кадра Matrix3D сначала генерирует недостающие ракурсы, оценивает их позы и глубину, а затем оптимизирует сцену через 3D Gaussian Splatting.
Для работы с несколькими кадрами без известных поз модель сама восстанавливает параметры камер, что раньше требовало отдельного этапа с COLMAP. Все это реализовано в репозитории с готовыми скриптами — от синтеза видов до полной реконструкции.
Конечно, есть нюансы: качество облаков точек пока уступает другим методам (GeoMVSNet). Но даже имеющиеся результаты достаточны для инициализации 3DGS, а главное — весь процесс занимает несколько минут на одной RTX 3090. Для сравнения: CAT3D, хотя и точнее в синтезе, требует 16х A100 и оптимизации под каждую сцену.
@ai_machinelearning_big_data
#AI #ML #Photogrammetry #Matrix3D #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56🔥30❤19🤣4🍓2
Forwarded from Анализ данных (Data analysis)
Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.
📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями
И всё это — с усложнением.
💥 Результаты:
— 🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.
— 🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.
— 🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.
— 🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.
— 🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.
🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔
📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
@data_analysis_ml
#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤62👍47🔥19🤣13😢1🙈1
FlexTok - метод токенизации изображений, который преобразует 2D-изображения в упорядоченные 1D-последовательности переменной длины.
Его цель - сократить объем данных, необходимых для обучения генеративных моделей, и при этом оставить достаточную информацию для качественной реконструкции и генерации.
В отличие от традиционных подходов, где число токенов фиксировано и зависит только от размера изображения, FlexTok подстраивается под сложность контента: простейшая сцена может кодироваться несколькими токенами, а сложная - десятками и сотнями .
FlexTok, это по сути, пайплайн из 3 компонентов: ViT‑энкодер, квантование регистров и маскирование внимания:
ViT‑энкодер с набором «регистровых» токенов читает латентные представления VAE‑GAN и конденсирует их в 1D-последовательность до 256 регистров .
Затем, с помощью FSQ‑квантования, каждый регистр дискретизируется в код из заранее определенного словаря размером ~64 000.
На этом этапе применяется "nested dropout": во время обучения случайно обрезаются последние токены, чтобы модель научилась упорядочивать информацию от грубых форм к деталям.
Параллельно применяется авторегрессионная маска внимания: каждый токен в цепочке видит только те, что были до него, и не знает о тех, что идут после. Это заставляет модель генерировать изображения шаг за шагом, от первого токена к последнему, и упрощает ей задачу прогнозирования следующих элементов.
Декодер в FlexTok - это модель rectified flow, которая на вход берет укороченные токены и слегка зашумленные латенты VAE и учится предсказывать тот шум, который нужно убрать, чтобы вернуть исходное представление.
Чтобы обучение шло быстрее и давало более точные результаты, добавляют REPA‑Loss: он сравнивает промежуточные признаки с векторами из DINOv2‑L. Благодаря этому даже при очень жесткой компрессии (от 1 до 256 токенов), FlexTok успешно восстанавливает детали изображения.
FlexTok легко встраивается в текстово‑ориентированные модели и может улучшить соответствие изображения описанию, даже если число токенов меняется. К тому же его адаптивная токенизация применима не только к картинкам, но и к аудио или видео.
@ai_machinelearning_big_data
#AI #ML #Tokenizer #Flextok #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥41❤13👍11🥰3
Forwarded from Machine learning Interview
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
❤112👍88🔥38😁24🥱14😢10🤔9🗿5❤🔥2👏2