CoMotion - метод, разработанный Apple для одновременного отслеживания 3D-движений нескольких людей, который принципиально отличается от покадрового обнаружения и классических способов трекинга.
CoMotion использует рекуррентную модель, которая поддерживает набор отслеживаемых 3D-поз и обновляет их при поступлении нового кадра, непосредственно анализируя пиксели изображения. Способность использовать визуальные подсказки вкупе с парадигмой
tracking by attention
позволяет CoMotion эффективно отслеживать перекрывающихся и временно исчезающих из виду людей.Архитектура CoMotion состоит из модуля обнаружения (он определяет кандидатов на новые треки) и модуля обновления поз (корректирует позы существующих треков). Оба модуля работают с признаками изображения, извлеченными с помощью стандартной модели
ConvNextV2
. Модуль обновления поз использует cross-attention к признакам изображения для каждого трека, опираясь на предыдущие состояния, и применяет GRU для рекуррентного обновления скрытых состояний.Прогнозирование 3D-поз выполняется путем параметризации модели SMPL, а управление треками основано на эвристических правилах, использующих модифицированную метрику Object Keypoint Similarity (OKS).
Модель CoMotion обучается в 3 этапа. Первый - предварительное обучение энкодера и модуля обнаружения на больших наборах данных отдельных изображений (псевдо-размеченные InstaVariety, COCO, MPII и синтетический BEDLAM). Второй - обучение модуля обновления поз на коротких видео из BEDLAM, WHAC-A-MOLE и размеченных PoseTrack и DanceTrack. На финальном этапе обучение модуля обновления поз продолжается на более длинных видеопоследовательностях.
Экспериментальная оценка CoMotion проводилась на стандартных бенчмарках для отслеживания и оценки поз. На PoseTrack21 CoMotion показал значительное улучшение метрик (MOTA на 14% и IDF1 на 12%). При этом CoMotion работает на порядок быстрее, чем сопоставимая система 4DHumans.
# Clone the repo
git clone https://github.com/apple/ml-comotion.git
cd ml-comotion
# Create a conda env
conda create -n comotion -y python=3.10
conda activate comotion
# Install dependencies
pip install -e
# Download models
bash get_pretrained_models.sh
# Run CoMotion
python demo.py -i path/to/video.mp4 -o results/
@ai_machinelearning_big_data
#AI #ML #3DTracking #CoMotion #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤19🔥11