227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 MUVERA: уравниваем в скорости многовекторный и одновекторный поиск.


MUVERA - алгоритм, разработанный Google Research, который сводит сложную задачу многовекторного поиска обратно к простому и быстрому MIPS, как в подходах с одним вектором.

Суть проста: вместо того чтобы работать с громоздким набором векторов, MUVERA сжимает его в единый вектор фиксированной длины, так называемый Fixed Dimensional Encoding (FDE). Главный трюк в том, что скалярное произведение этих новых FDE-векторов очень точно аппроксимирует исходную, «честную» метрику Чамфера.

На практике процесс выглядит как двухэтапный конвейер. Сначала MUVERA генерирует FDE для всех документов в базе и индексирует их с помощью обычного MIPS-солвера. Когда приходит запрос, для него тоже создается FDE, и система молниеносно находит небольшой список кандидатов. А уже затем этот короткий список переранжируется с использованием оригинальной, медленной, но точной метрики Чамфера. На выходе получаем и скорость, и качество.

В практическом сравнении с предыдущим SOTA методом PLAID, MUVERA показывает в среднем на 10% более высокую полноту выдачи при сокращении задержки на 90%. Чтобы достичь того же качества, алгоритму требуется отобрать в 5-20 раз меньше кандидатов для финального переранжирования.

Более того, эти FDE-векторы отлично сжимаются — до 32 раз с минимальной потерей качества.

Для тех. кто хочет попробовать, в репозитории проекта на Github есть реализации MUVERA на Python и C++ .


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MUVERA #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5319🔥16🥰5