227K subscribers
3.79K photos
631 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 InkSight: Преобразование рукописных заметок в цифровой формат с анимацией почерка.

InkSight - модель, разработанная в Google Research, для конвертации изображений рукописных заметок в цифровой формат, воспроизводящий процесс написания. Эта технология, "derendering", позволяет преобразовать физический почерк в цифровую форму, сохраняя его индивидуальность и динамику.

InkSight в отличие от OCR , выполняет захват рукописного текста в виде набора штрихов, а не просто преобразует его в текст.

Процесс преобразования входного изображения с рукописным текстом разбит на три этапа: OCR для извлечения слов, обработка каждого слова по отдельности и замена пиксельного представления слов штрихами.

Для обучения модели используются пары изображений текста и соответствующих цифровых штрихов. Штрихи, полученные из траекторий письма в реальном времени, представляются в виде последовательности точек, а соответствующее изображение создается путем рендеринга этих штрихов.

Уникальный этап в обучении модели - "ink tokenizer", преобразующий точки в формат, удобный для обработки LLM.

Архитектура InkSight вдохновлена моделью Pali и состоит из кодера ViT и кодер-декодера mT5. Были обучены три варианта модели:

🟠Small-i - 340M (ViT B/16 + mT5-base), обучена на датасете JFT-300M;

🟢Small-p - 340М (ViT B/16 + mT5-base), обучена на датасете ImageNet-21k;

🟠Large-i - 1B (ViT L/16 + mT5-large), обучена на датасете JFT-300M.

Все модели используют контекст длиной 1024 для инференса и 128 для ввода.

Результаты качественной оценки с базовым методом GVS (General Virtual Sketching) показали, что модели InkSight более точно воспроизводят текстовое содержимое, игнорируя нерелевантный фон, и лучше справляются с окклюзиями по сравнению с GVS.

Количественная оценка показала, что большинство штрихов, сгенерированных моделью Large-i, сопоставимы по качеству с результатами, полученными вручную.

⚠️ В открытый доступ опубликована модель InkSight small-p в вариантах для запуска на CPU\GPU и TPU, дополнительные материалы, упомянутые в техническом отчете и ноутбук с инфренсом модели на нескольких примерах + пример кода для выполнения инференса.

▶️Локальный запуск клонированием InkSight Demo HF :

# Clone the huggingface space
git clone https://huggingface.co/spaces/Derendering/Model-Output-Playground

# Install the dependencies (skip if you have them already)
pip install gradio gdown

# Run the Gradio Playground
python app.py


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #InkSight #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2511🔥8🐳2😁1
🌟 MUVERA: уравниваем в скорости многовекторный и одновекторный поиск.


MUVERA - алгоритм, разработанный Google Research, который сводит сложную задачу многовекторного поиска обратно к простому и быстрому MIPS, как в подходах с одним вектором.

Суть проста: вместо того чтобы работать с громоздким набором векторов, MUVERA сжимает его в единый вектор фиксированной длины, так называемый Fixed Dimensional Encoding (FDE). Главный трюк в том, что скалярное произведение этих новых FDE-векторов очень точно аппроксимирует исходную, «честную» метрику Чамфера.

На практике процесс выглядит как двухэтапный конвейер. Сначала MUVERA генерирует FDE для всех документов в базе и индексирует их с помощью обычного MIPS-солвера. Когда приходит запрос, для него тоже создается FDE, и система молниеносно находит небольшой список кандидатов. А уже затем этот короткий список переранжируется с использованием оригинальной, медленной, но точной метрики Чамфера. На выходе получаем и скорость, и качество.

В практическом сравнении с предыдущим SOTA методом PLAID, MUVERA показывает в среднем на 10% более высокую полноту выдачи при сокращении задержки на 90%. Чтобы достичь того же качества, алгоритму требуется отобрать в 5-20 раз меньше кандидатов для финального переранжирования.

Более того, эти FDE-векторы отлично сжимаются — до 32 раз с минимальной потерей качества.

Для тех. кто хочет попробовать, в репозитории проекта на Github есть реализации MUVERA на Python и C++ .


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MUVERA #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5319🔥16🥰5