227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Test-Time Training RNN (ТТТ) - принципиально новый метод машинного обучения.

TTT - это метод, который позволяет моделям искусственного интеллекта адаптироваться и учиться непосредственно во время использования, а не только во время предварительного обучения.
Основное преимущество TTT заключается в том, что он может эффективно обрабатывать длинные контексты (большие объемы входных данных) без значительного увеличения вычислительных затрат.

Исследователи провели эксперименты на различных наборах данных, включая книги, и обнаружили, что TTT часто превосходит традиционные методы.
По сравнительным бенчмаркам с другими популярными методами машинного обучения, такими как трансформеры и рекуррентные нейронные сети, было обнаружено, что в некоторых задачах TTT работает лучше.

Этот революционный метод позволит приблизиться к созданию более гибких и эффективных моделей искусственного интеллекта, способных лучше адаптироваться к новым данным в реальном времени.

На Github опубликованы адаптации метода:

- адаптация под Pytorch
- адаптация под JAX

🟡Arxiv
🖥 GitHub for Pytorch [ Stars: 277 | Issues: 3 | Forks: 12 ]
🖥 GitHub for Jax [ Stars: 129 | Issues: 1 | Forks: 6 ]

@ai_machinelearning_big_data

#Pytorch #Jax #TTT #LLM #Training
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
43🔥26👍10🎉21
🌟 Параллельные стратегии с Jax: обучающий туториал.

Обучение LLM требует огромных вычислительных ресурсов. Поскольку размеры моделей исчисляются миллиардами параметров, специализированные методы распараллеливания необходимы для того, чтобы сделать обучение выполнимым.

В статье "Исследование параллельных стратегий с Jax" подробно рассматривается реализация некоторых стратегий масштабирования в Jax - фреймворке Python, предназначенном для высокопроизводительных численных вычислений с поддержкой ускорителей GPU и TPU.

Стратегии, описанные в туториале с примерами кода и иллюстрациями:

🟢Data Parallelism - распределение данных между несколькими устройствами, которые одновременно обучают модель;  

🟢Tensor Parallelism - распределение весов модели между устройствами, позволяет каждому устройству обрабатывать свою часть тензора параллельно; 

🟢Pipeline Parallelism разделяет модель на этапы, которые выполняются последовательно на разных устройствах; 

🟢Mixture-of-Experts использует множество специализированных экспертов для обработки различных частей входных данных, что позволяет масштабировать модель до огромных размеров.


▶️ Автор статьи - Александр Самарин, Lead ML Engineer в Huawei c 5-ти летнем опытом в глубоком обучении.


@ai_machinelearning_big_data

#AI #ML #LLM #JAX #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍136🔥3🎉2🤝1
⚡️🔥 Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX».

Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.

Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.

Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.

Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.

В этом руководстве содержится пошаговый гайд по реализации простой нейронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.

📌 Читать
📌Документация Jax

@ai_machinelearning_big_data


#jax #pytorch #google
🔥56👍2110❤‍🔥1
✔️ Stanford и Google представили Marin — первую полностью открытую LLM, разработанную на JAX

Что делает Marin особенной:
— Полностью открыты не только веса, но показан весь процесс обучения: код, данные, гиперпараметры модели, логи, эксперименты — всё доступно на GitHub
— Модель обучена на 12.7 трлн токенов и в 14 из 19 тестов обошла Llama 3.1 8B
— Лицензия Apache 2.0, всё можно использовать, модифицировать и воспроизводить
— Levanter + JAX обеспечивают bit‑exact повторяемость и масштабируемость на TPU/GPU

Проект позиционируется как открытая лаборатория: каждый эксперимент оформляется через pull request, логируется в WandB, обсуждается в issue и фиксируется в истории репозитория. Даже неудачные эксперименты сохраняются ради прозрачности.

Выпущены две версии:
- Marin‑8B‑Base — сильный base-модель, превосходит Llama 3.1 8B
- Marin‑8B‑Instruct — обучена с помощью SFT, обгоняет OLMo 2, немного уступает Llama 3.1 Tulu

Это не просто открытые веса, а новый стандарт для научных вычислений в эпоху больших моделей.

* JAX — это фреймворк от Google для научных и численных вычислений, особенно популярен в сфере машинного обучения.


**TPU (Tensor Processing Unit) — это специализированный чип от Google, созданный для ускорения AI-задач.


🟠Github: https://github.com/stanford-crfm/marin
🟠Блог: https://developers.googleblog.com/en/stanfords-marin-foundation-model-first-fully-open-model-developed-using-jax/
🟠Гайд: https://docs.jax.dev/en/latest/quickstart.html

@ai_machinelearning_big_data

#ai #ml #tpu #jax #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7025👍18🥰2💯2🤔1