227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥4510💘3😁1
🖥 Nvidia почти достигла рыночной капитализации в 4 триллиона долларов.

Во времена золотой лихорадки богатели продавцы лопат, а не старатели.
Сегодня тот же принцип работает в ИИ: NVIDIA — продавец лопат XXI века 🛠️

• Золотоискатели-2025 — стартапы и корпорации, обучающие LLM, строящие автономных агентов и генеративные сервисы.
• Лопаты — GPU серии A/H, NVLink, CUDA-стек, DGX-сервера и сетевые ускорители.
• Магазин инструментов — собственные облака NVIDIA и партнёрские дата-центры.

Пока одни ищут «золото» в данных, NVIDIA продаёт каждому из них новые лопаты — и зарабатывает на каждом.

💰 Если бы вы вложили $10,000 в Nvidia в 2010… сейчас у вас было бы $4,400,000.


@ai_machinelearning_big_data

#ai #ml #Nvidia #market

#AI #GPU #NVIDIA #Инфраструктура
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥85👍5920🤷‍♂4🤩2😈1
This media is not supported in your browser
VIEW IN TELEGRAM
🐼 Pandas тормозит на больших данных?

NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.

Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя cudf.pandas.

Для примеры были взяты:
📉 Скользящие средние (50D и 200D)
📅 Недельная статистика закрытия рынков
🧊 В общей сложности ~18M строк

Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз

Код скрипта не менялся вообще — тот же pandas, но на GPU.

Это один из примеров, где ускорение достигается без переписывания логики кода.

🟡 Потестить самому можно в Colab
🟡 Другие примеры с кодом — здесь

@ai_machinelearning_big_data


#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1117👍38🔥18🤔3😁2🤣2