223K subscribers
3.86K photos
645 videos
17 files
4.48K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 ARP: авторегрессионное обучение последовательности действий для задач роботизированного манипулирования.

ARP - архитектура авторегрессионной политики, разработанная в Рутгерском университете, которая учится генерировать последовательности действий, используя Chunking Causal Transformer (CCT), предлагая универсальный подход, превосходящий специализированные решения для задач манипулирования.

Политика предсказывает только будущую последовательность действий на основе текущего состояния (или наблюдения), не пытаясь предсказать всю траекторию. Этот метод обучения последовательности действий более достижим в приложениях робототехники и позволяет лучше использовать причинно-следственные связи.

ARP состоит из трех основных компонентов:

🟢Chunking Causal Transformer: CCT лежит в основе АРП и отвечает за авторегрессивную генерацию последовательности действий. Он принимает на вход текущее наблюдение и последовательность прошлых действий и предсказывает следующий фрагмент (chunk) действий.

🟢Модуль эмбединга действий: преобразует действия (дискретные, непрерывные или координаты пикселей) в непрерывные векторные представления (эмбединги), которые могут быть обработаны CCT.

🟢Модуль декодирования действий: преобразует инференс от CCT обратно в соответствующие действия в формате, подходящем для управления роботом.

ARP оценивался в 3 средах (Push-T, ALOHA, RLBench) и сравнивался с современными методами для каждой среды. Во всех случаях ARP продемонстрировал высокую производительность, достигая SOTA-показателей при меньших вычислительных затратах.

ARP был протестирован в реальном эксперименте с роботом, где он успешно выполнил сложную задачу по затягиванию гаек.

В репозитории проекта доступен код для обучения, тестирования в средах Push-T, ALOHA, RLBench и подробные инструкции по настройке окружения под каждую из этих задач.


⚠️ В зависимости от задачи (Push-T, ALOHA или RLBench) необходимо выбрать соответствующий файл конфигурации. Примеры конфигурационных файлов приведены в файле Experiments.md

⚠️ Форматы данных для каждой задачи разные:

🟠Push-T: RGB-изображения 96x96 px;
🟠ALOHA - RGB-изображения 480x640 px;
🟠RLBench - RGBD (RGB+канал Depth) 128 × 128px.


🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Robotics #ARP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍15🔥7🥰1
🌟 CogView-3Plus-3B: модель генерации Text-to-Image.

CogView-3-Plus - генеративная модель на архитектуре DiT из недавно представленного на ECCV'24 семейства CogView3.

CogView-3-Plus использует диффузионный шедулер Zero-SNR и VAE с latent dimension 16. По сравнению с MMDiT, она эффективней в обучении и инференсе при сохранении основных возможностей модели.

Технические параметры:

🟢Архитектура: DiT;

🟢Количество параметров: 3 млрд.;

🟢Разрешение: от 512 до 2048, кратное 32;

🟢Разрядности: FP32, BF16 (рекомендуется);

🟢VRAM: 20Gb (1024x1024), 30Gb (2048x2048);

🟢СPU Offload: есть, при его использовании, VRAM для всех поддерживаемых разрешений - 11Gb;

🟢Язык промпта: English;

🟢Max. длина промпта: 244 токена.

Инференс модели возможен в СLI (diffusers, SAT) и в WebUI на Gradio.

⚠️ В файле запуска Gradio используется функция улучшения промпта через ChatGPT (строки 37-112), для ее использования понадобится OpenAI API KEY.

⚠️ Модели серии CogView3 обучаются на длинных аннотациях изображений, поэтому рекомендуется использовать LLM-образные промпты для генерации, это значительно улучшит качество инференса.


📌Лицензирование : Apache 2.0 License.


🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #T2I #CogView3
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
16👍7🔥3👏1
🌟 Branch-Train-MiX: метод получения MoE-модели

Метод Branch-Train-MiX создает MoE-модель из dense-модели. Суть заключается в том, чтобы взять несколько одинаковых LLM, параллельно обучить их на разных датасетах и агрегировать предсказания каждой модели во время инференса.

После обучения все модели предлагается слить в MoE, чтобы FNN каждой базовой модели стал экспертом в соответствующем слое, и добавить роутер.


🟡 Страница проекта
🟡 Разбор метода


@ai_machinelearning_big_data

#MoE #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥75
✔️ Google переключается на атомную энергию для питания своих дата-центров с ИИ.

Google подписал соглашение с Kairos Power об использовании небольших ядерных реакторов для обеспечения энергией своих дата-центров, работающих на базе искусственного интеллекта.

Первые реакторы планируется запустить в течение этого десятилетия, а к 2035 году их количество будет увеличено. Google и Kairos Power не раскрывают финансовые детали сделки и места строительства новых электростанций.

Технологические компании все чаще обращаются к атомной энергии для обеспечения электропитанием огромных дата-центров, на которых основана работа ИИ. В прошлом месяце Microsoft заключила соглашение о возобновлении работы на ядерной электростанции Три-Майл-Айленд в США.
bbc.com

✔️ США рассматривают возможность ограничения экспорта чипов для ИИ от Nvidia и AMD в страны Персидского залива.

Цель - ограничить доступ к американским технологиям в интересах национальной безопасности США. Ограничения будут основаны на новой системе лицензирования экспорта чипов для центров обработки данных, которая была представлена в прошлом месяце.

Власти США обеспокоены растущим спросом на ЦОДы, работающие на основе ИИ, в странах Персидского залива, и их финансовыми возможностями. Новые правила могут потребовать от компаний сокращения связей с Китаем и странами залива в обмен на доступ к американским технологиям.
Nvidia пока не прокомментировала ситуацию.
finance.yahoo.com

✔️ Вице-президент Microsoft по ИИ переходит в OpenAI для работы над AGI.

Себастьян Бубек проработал в Microsoft десять лет, занимаясь разработкой малых языковых моделей. Несмотря на то, что Microsoft и OpenAI являются конкурентами в некоторых областях, Microsoft высоко оценила вклад Бубека и надеется на продолжение сотрудничества.

В OpenAI Бубек будет работать над достижением AGI. Эксперты отрасли полагают, что опыт Бубека поможет OpenAI в исследованиях и разработке языковых моделей, которые, несмотря на меньший, чем у AGI, масштаб, могут играть значительную роль в достижении этой цели.
bloomberg.com

✔️ Cognite выпускает отчет о сравнительном анализе языковых моделей для промышленных агентов.

Cognite, лидер в области ИИ для промышленности, представила отчет "Cognite Atlas AI LLM & SLM Benchmark Report for Industrial Agents" на мероприятии IMPACT 2024.

Это первый в своем роде отчет, который должен решить проблему несоответствия общих наборов данных для сравнительного анализа LLM и SLM в специфике промышленных задач. В отчете основное внимание уделено поиску на естественном языке в качестве ключевого инструмента извлечения данных для промышленных агентов ИИ.

Отчет будет доступен для бесплатной загрузки 28 октября 2024 года на официальном сайте Cognite.
businesswire.com

✔️ TSMC строит завод по производству чипов в Европе.

Министр науки и технологий Тайваня Ву Чэн-вэнь сообщил Bloomberg TV, что TSMC уже начала строительство своего первого завода по производству полупроводников в Дрездене и планирует строительство следующих заводов для различных секторов рынка.

Строительство завода в Дрездене началось в августе 2024 года, общая сумма инвестиций превысит 10 млрд евро, при этом проект получил 5 млрд евро государственных субсидий. Завод создается в партнерстве с Bosch, Infineon и NXP для удовлетворения потребностей европейской автомобильной и промышленной отрасли в полупроводниках.
euronews.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍318🔥2👏2🤗1
🌟 Возвращение RNN: LSTM и GRU — все, что нам было нужно?

Архитектура Transformer доминирует в моделировании последовательностей уже несколько лет, демонстрируя отличные результаты в задачах NLP, машинного перевода и генерации текста. Главный недостаток Transformer — они долго считают длинные последовательности. А если вычислительных ресурсов мало, то реализация занимает либо много времени, либо требует их увеличения.

Авторы исследования предлагают вернуться к RNN, ведь они быстрее считают и параллельно учитывают контекст. Чтобы отвязаться от обратного распространения ошибки (BPTT), которая требует линейного времени обучения, применяется алгоритм параллельного сканирования за счет устранения зависимости от срытых состояний из гейтов LSTM и GRU.

В предлагаемом методе представлены "уменьшенные" LTSM и GRU - minLSTM и minGRU. Они не только обучаются параллельно, но и используют значительно меньше параметров, чем их старшие аналоги.

Минимализм версий достигается следующим образом:

🟢Устранение зависимостей скрытых состояний из гейтов.
В minLSTM и minGRU input, forget и update gate зависят только от входных данных, а не от предыдущих скрытых состояний.

🟢Отказ от ограничения диапазона candidate hidden state.
В традиционных LSTM и GRU функция гиперболического тангенса используется для ограничения диапазона значений скрытых состояний. В minLSTM и minGRU это ограничение снимается.

🟢Неизменность масштаба выходных данных во времени (только для minLSTM).
Для minLSTM выполняется нормализация forget и input гейтов, чтобы гарантировать, что масштаб состояния ячейки не зависит от времени.

Результаты экспериментов:

🟠Время выполнения: minLSTM и minGRU скорость обучения по сравнению с LSTM и GRU, больше в 1361 раз для последовательности длиной 4096;

🟠Задача выборочного копирования: minLSTM и minGRU успешно справились, в отличие от S4, H3 и Hyena;

🟠Обучение с подкреплением на датасете D4RL: minLSTM и minGRU обошли Decision S4 и показали производительность, сопоставимую с Decision Transformer, Aaren и Mamba;

🟠Языковое моделирование: minLSTM, minGRU, Mamba и Transformer показывают одинаковые результаты, но Transformer требует значительно большего количества шагов обучения.

Прикладная реализация численно-устойчивой в логарифмическом пространстве версии метода minGRU на Pytorch представлена в репозитории на Github.

▶️ Локальная установка и запуск minGRU в последовательном и параллельном режиме :

# Install miniGRU-pytorch
pip install minGRU-pytorch

# Usage
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(512)
x = torch.randn(2, 1024, 512)
out = min_gru(x)
assert x.shape == out.shape

# Sanity check
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(dim = 512, expansion_factor = 1.5)
x = torch.randn(1, 2048, 512)

# parallel

parallel_out = min_gru(x)[:, -1:]

# sequential

prev_hidden = None
for token in x.unbind(dim = 1):
sequential_out, prev_hidden = min_gru(token[:, None, :], prev_hidden, return_next_prev_hidden = True)
assert torch.allclose(parallel_out, sequential_out, atol = 1e-4)


📌Лицензирование : MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #RNN #miniGRU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2710🔥5😁1
🌟 Llama-3.1-Nemotron-70B: набор файнтюн-моделей и датасет HelpSteer2 от NVIDIA.

NVIDIA опубликовала на HuggingFace 4 версии Llama-3.1-Nemotron-70B:

▶️ Llama-3.1-Nemotron-70B-Instruct

Модель получила улучшение в задачах ответа на вопросы и выполнение пользовательских инструкций. Обучение проводилось с использованием RLHF (REINFORCE) на основе Llama-3.1-Nemotron-70B-Reward и датасета HelpSteer2-Preference.

Nemotron-70B-Instruct достигла высоких результатов в тестах Arena Hard (85.0), AlpacaEval 2 LC (57.6) и GPT-4-Turbo MT-Bench (8.98), и обошла GPT-4o и Claude 3.5 Sonnet.

🟠Llama-3.1-Nemotron-70B-Instruct-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованные версии Llama-3.1-Nemotron-70B-Instruct-HF в формате GGUF с разрядностями от 1-bit (16.75 Gb) до 8-bit (74.98 Gb).

▶️ Llama-3.1-Nemotron-70B-Reward

Модель с функционалом чата, рассуждений и специальными навыками для оценки качества ответов других LLM. Она использует английский язык и способна оценивать ответы длиной до 4096 токенов, присваивая им баллы, отражающие их качество.

Основана на Llama-3.1-70B-Instruct Base и использует комбинацию методов Bradley Terry и SteerLM Regression Reward Modelling.

Nemotron-70B-Reward занимает первое место в RewardBench.

🟠Llama-3.1-Nemotron-70B-Reward-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованная версия Llama-3.1-Nemotron-70B-Reward-HF в формате MLX (40 Gb).

Вместе с моделями опубликован датасет HelpSteer2 - набор данных на английском языке, предназначенный для обучения reward-моделей, которые используются для повышения полезности, фактической точности и связности ответов других LLM.

HelpSteer2 содержит 21 362 строки, каждая из которых включает в себя запрос, ответ и пять аннотированных человеком атрибутов ответа: полезность, правильность, связность, сложность и многословность.

⚠️ Представленные модели требуют систему с как минимум 4 GPU NVIDIA (40 Gb) или 2 GPU (80 Gb) и 150 Gb свободного места на диске.

⚠️ Для локального развертывания Llama-3.1-Nemotron-70B без поддержки Transformers рекомендуется использовать NVIDIA NeMo Framework и TRT-LLM.


📌Лицензирование моделей: Llama 3.1 Community License.

📌Лицензирование датасета : CC-BY-4.0


🟡Коллекция моделей на HF
🟡Arxiv
🟡Датасет
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Nemotron #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
16👍10🔥6
⚡️ Ollama получила поддержку запуска моделей GGUF с Huggingface.

Ollama, приложение, основанное на llama.cpp, для локального взаимодействия с LLM получила возможность запускать одной командой любую GGUF модель, размещенную на Huggingface без создания нового Modelfile.

На сегодняшний день на HF около 45 тысяч моделей в формате GGUF, и теперь можно запустить любую из них одной командой ollama run. Также доступна настройка параметров запуска: выбор типа квантования и системного промпта.

▶️Быстрый запуск:

ollama run hf.co/{username}/{repository}


▶️Запуск с выбором типа квантования:

ollama run hf.co/{username}/{repository}:{quantization}


По умолчанию шаблон чата будет выбран автоматически из списка часто используемых шаблонов.

Он создается на основе встроенных метаданных tokenizer.chat_template, хранящихся в файле GGUF. Если в GGUF нет встроенного шаблона или необходимо настроить свой шаблон чата, нужно создать новый файл с именем template.

Шаблон должен быть шаблоном Go, а не шаблоном Jinja. Например:

{{ if .System }}<|system|>
{{ .System }}<|end|>
{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}<|end|>
{{ end }}<|assistant|>
{{ .Response }}<|end|>


📌 Список всех доступных параметров доступен в документации репозитория Ollama.

⚠️ В качестве доменного имени в команде запуска можно использовать доменные имена как hf.co, так и huggingface.co.


🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Ollama #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
33👍21🔥11👏51😁1