227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Возвращение RNN: LSTM и GRU — все, что нам было нужно?

Архитектура Transformer доминирует в моделировании последовательностей уже несколько лет, демонстрируя отличные результаты в задачах NLP, машинного перевода и генерации текста. Главный недостаток Transformer — они долго считают длинные последовательности. А если вычислительных ресурсов мало, то реализация занимает либо много времени, либо требует их увеличения.

Авторы исследования предлагают вернуться к RNN, ведь они быстрее считают и параллельно учитывают контекст. Чтобы отвязаться от обратного распространения ошибки (BPTT), которая требует линейного времени обучения, применяется алгоритм параллельного сканирования за счет устранения зависимости от срытых состояний из гейтов LSTM и GRU.

В предлагаемом методе представлены "уменьшенные" LTSM и GRU - minLSTM и minGRU. Они не только обучаются параллельно, но и используют значительно меньше параметров, чем их старшие аналоги.

Минимализм версий достигается следующим образом:

🟢Устранение зависимостей скрытых состояний из гейтов.
В minLSTM и minGRU input, forget и update gate зависят только от входных данных, а не от предыдущих скрытых состояний.

🟢Отказ от ограничения диапазона candidate hidden state.
В традиционных LSTM и GRU функция гиперболического тангенса используется для ограничения диапазона значений скрытых состояний. В minLSTM и minGRU это ограничение снимается.

🟢Неизменность масштаба выходных данных во времени (только для minLSTM).
Для minLSTM выполняется нормализация forget и input гейтов, чтобы гарантировать, что масштаб состояния ячейки не зависит от времени.

Результаты экспериментов:

🟠Время выполнения: minLSTM и minGRU скорость обучения по сравнению с LSTM и GRU, больше в 1361 раз для последовательности длиной 4096;

🟠Задача выборочного копирования: minLSTM и minGRU успешно справились, в отличие от S4, H3 и Hyena;

🟠Обучение с подкреплением на датасете D4RL: minLSTM и minGRU обошли Decision S4 и показали производительность, сопоставимую с Decision Transformer, Aaren и Mamba;

🟠Языковое моделирование: minLSTM, minGRU, Mamba и Transformer показывают одинаковые результаты, но Transformer требует значительно большего количества шагов обучения.

Прикладная реализация численно-устойчивой в логарифмическом пространстве версии метода minGRU на Pytorch представлена в репозитории на Github.

▶️ Локальная установка и запуск minGRU в последовательном и параллельном режиме :

# Install miniGRU-pytorch
pip install minGRU-pytorch

# Usage
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(512)
x = torch.randn(2, 1024, 512)
out = min_gru(x)
assert x.shape == out.shape

# Sanity check
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(dim = 512, expansion_factor = 1.5)
x = torch.randn(1, 2048, 512)

# parallel

parallel_out = min_gru(x)[:, -1:]

# sequential

prev_hidden = None
for token in x.unbind(dim = 1):
sequential_out, prev_hidden = min_gru(token[:, None, :], prev_hidden, return_next_prev_hidden = True)
assert torch.allclose(parallel_out, sequential_out, atol = 1e-4)


📌Лицензирование : MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #RNN #miniGRU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2710🔥5😁1