222K subscribers
3.85K photos
642 videos
17 files
4.47K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Гайдбук по оценке больших языковых моделей от Hugging Face

Hugging Face выложила на Github руководство по оценке LLM.

В нем собраны различные способы оценки модели, руководства по разработке собственных оценок, а также советы и рекомендации из практического опыта. В руководстве рассказывается о разных способах оценки: с помощью автоматических тестов, людей или других моделей.

Особое внимание уделяется тому, как избежать проблем с инференсом модели и сделать результаты одинаковыми. В руководстве есть советы о том, как сделать данные чистыми, как использовать шаблоны для общения с LLM и как анализировать неожиданные плохие результаты.

Если вы ничего не знаете об оценке и бенчмарках, вам следует начать с разделов Basics в каждой главе, прежде чем погружаться глубже. В разделе базовые знания вы также найдете пояснения, которые помогут вам разобраться в важных темах LLM: например, как работает инференс модели и что такое токенизация.

Более прикладными разделы: советы и рекомендации, устранение неполадок и разделы, посвященные дизайну.

▶️Оглавление:

🟢Автоматические бенчмарки
🟢Оценка человеком
🟢LLM-судья
🟢Устранение неполадок
🟢Базовые знания

📌 Планы на будущие гайды:

🟠Описание автоматических метрик;
🟠Какие основные моменты вы всегда должны учитывать при построении задачи;
🟠Зачем нужна оценка LLM;
🟠Почему сравнивать модели между собой - это сложно.

🖥Github

@ai_machinelearning_big_data

#AI #ML #LLM #Huggingface #Guide
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21🔥128🙉1
🌟 CogVideoX Factory: оптимизация файнтюна моделей генерации видео семейства CogVideoX.

CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.

Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".

Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:

🟢CPUOffloadOptimizer - перемещает обучаемые параметры и градиенты модели в CPU, освобождая память GPU для других операций;

🟢DeepSpeed Zero2 - распределяет параметры модели по нескольким GPU, что позволяет обучать большие модели, которые иначе не поместились бы в память одного GPU;

🟢LoRA - метод тонкой настройки, который изменяет только небольшое подмножество параметров модели, сохраняя при этом основную часть весов неизменной.

CogVideoX Factory предлагает сценарии обучения:

🟠LoRA для "text-to-video": cкрипт train_text_to_video_lora.sh;

🟠LoRA для "IMG-to-video": cкрипт train_image_to_video_lora.sh;

🟠SFT всей модели для "text-to-video": скрипт train_text_to_video_sft.sh.

⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт prepare_dataset.py играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.

CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.


📌Лицензирование : Apache 2.0 License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍95
⚡️ Aria: открытая мультимодальная модель на основе MoE

Rhymes AI опубликовала Aria — первую в мире открытую MMLM, основанную на Mixture-of-Experts. Aria способна обрабатывать текст, изображения, видео и код одновременно, не требуя отдельных настроек для каждого типа данных.

Модель отличается высокой производительностью при обработке мультимодальных и языковых данных, включая изображения различных размеров и соотношений сторон.

Aria использует 3,9 млрд. активных параметров из 25 млрд. общих и обладает длинным контекстным окном в 64 тыс. токенов, что позволяет ей эффективно обрабатывать большие объемы данных, например, создавать аннотации к видео из 256 кадров за 10 секунд.

MoE-архитектура Aria состоит из 66 экспертов. Каждый эксперт структурно идентичен FFN в трансформере. Входной токен направляется только к подмножеству экспертов в каждом слое, это позволяет эффективно распределить вычислительные потребности модели.

ARIA отличается от предыдущих мультимодальных моделей MoE тем, что она обучается с нуля с использованием универсальных экспертов, а не специализированных для каждой модальности.

Обучение ARIA проходило на 6.4 трлн. языковых и 400 млрд. токенах в 4 этапа:

🟢На первых двух обучаются декодеры MoE и ViT на наборах текстовых данных и наборах смеси тект-инображение-видео;

🟢На третьем этапе модель проходит обучение на длинных мультимодальных последовательностях для расширения контекстного окна;

🟢На последнем этапе выполняется дообучение на наборе данных вопрос-ответ для улучшения способности VQA и выполнению инструкций.

ARIA протестирована бенчмарках MMMU, MathVista, DocVQA, ChartQA, TextVQA, MMBench-1.1, EgoSchema, LongVideoBench, VideoMME, MMLU, MATH, ARC Challenge и HumanEval (задачи понимания кода).

Результаты тестирования показывают, что ARIA превосходит открытые модели Pixtral-12B и Llama3.2-11B и демонстрирует конкурентоспособные результаты по сравнению с проприетарными моделями GPT-4o и Gemini-1.5.

⚠️ Так как Aria имеет 25.3 млрд. общих параметров, они могут быть загружены в один A100 (80GB) с точностью bfloat16.

▶️ Разработчики в репозитории на Github подготовили инструкции инференса в Transformers, альтернативный вариант в среде vLLM, ноутбуки различных режимов (с одним и несколькими изображениями, многостраничным PDF и видео) в разных средах, туториалы по подготовке кастомного датасета для обучения, файнтюну с LoRA и Full parameter.


📌Лицензирование : Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #MoE #Aria #RhymesAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515🔥10
✔️ Microsoft запустила новые возможности ИИ для здравоохранения.

Microsoft представила ряд инноваций в облачной платформе Microsoft Cloud for Healthcare, которые направлены на улучшение взаимодействия между пациентами и врачами, повышение эффективности работы медицинских бригад и расширение возможностей анализа данных.

Новые модели ИИ для здравоохранения в Azure AI Studio, решения для обработки медицинских данных в Microsoft Fabric, сервис медицинских агентов в Copilot Studio и решение для автоматизации рабочих процессов медсестер на основе ИИ.

Microsoft Cloud for Healthcare предлагает передовые модели медицинской визуализации, разработанные в сотрудничестве с Providence и PaigeAi.
news.microsoft.com

✔️ AMD представила процессор MI325X для ЦОД, конкурента Blackwell от Nvidia.

Производство MI325X начнется до конца 2024 года, а его выпуск ускорит график разработки новых процессоров AMD до одного в год.

MI325X получит до 288 GB HBM3E памяти, будет построен на новой CDNA4 архитектуре по 3-нм процессу.

MI325X бросит вызов грядущим чипам Blackwell от Nvidia, поставки которых в значительных объемах начнутся в начале 2025. AMD планирует улучшать свое программное обеспечение ROCm, чтобы разработчики ИИ могли легко переносить свои модели ИИ на процессоры AMD.
cnbc.com

✔️ TikTok сокращает сотни рабочих мест, переходя на модерацию контента с помощью ИИ.

TikTok увольняет сотрудников по всему миру, в том числе большое количество сотрудников в Малайзии, поскольку компания переключает внимание на более широкое использование ИИ в модерации контента. Два источника сообщили Reuters, что в Малайзии было сокращено более 700 рабочих мест. TikTok позже уточнил, что увольнения коснулись менее 500 сотрудников в стране.

TikTok подтвердил увольнения и заявил, что в рамках более широкого плана по совершенствованию операций по модерации, по всему миру, как ожидается, будет затронуто несколько сотен сотрудников.
reuters.com

✔️ Редакторы "Википедии" борются с некачественным контентом, созданным ИИ.

Редакторы "Википедии" объединились в группу "WikiProject AI Cleanup" для борьбы с контентом, созданным ИИ, который содержит ошибки, галлюцинации и плохое оформление.

Цель группы — не запретить использование ИИ, а убедиться в качестве информации и исправить или удалить неприемлемый контент. Редакторы отмечают, что некоторые случаи использования ИИ очевидны, например, когда в статьях остаются типичные фразы чат-ботов. Однако, некоторые ошибки, особенно в сложных темах, трудно обнаружить.

Редакторы "Википедии" уже понизили рейтинг некоторых новостных сайтов, использующих ИИ для создания контента.
404media.co

✔️ Google выпустила генератор изображений Imagen 3 для всех пользователей Gemini, но только подписчики Advanced могут генерировать изображения людей.

Imagen 3 считается самой качественной моделью Google для генерации изображений, способной лучше понимать инструкции и создавать изображения с меньшим количеством визуальных артефактов. Однако есть одно ограничение: для создания изображений людей требуется подписка Gemini Advanced, которая стоит 19,99 долларов в месяц и входит в план Google One AI Premium, включающий 2 ТБ хранилища и доступ к Gemini в Google Docs.

В отличие от других генераторов, Imagen 3 создает одно изображение на каждый запрос, но позволяет уточнять изображение, запрашивая изменения. Скачать можно любое количество изображений в разрешении 2048 x 2048 в формате JPEG.. Google особо гордится возможностями Imagen 3 в области рендеринга текста, однако, по результатам тестирования, в этой области все еще есть над чем работать.
techradar.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍168🔥4
⚡️ OpenAI Swarm: Экспериментальный фреймворк для оркестрации мультиагентных систем.

Swarm - это экспериментальный фреймворк, разработанный командой OpenAI Solutions, для создания, оркестрации и развертывания многоагентных систем. Фреймворк фокусируется на упрощении координации, запуска, контроля и тестирования агентов.

Основная цель Swarm - продемонстрировать паттерны, описанные в Orchestrating Agents: Handoffs & Routines cookbook.

Фреймворк построен на двух основных абстракциях: агентах (Agent) и передачах управления (handoffs):

Агент - это набор инструкций и функций, который может передавать выполнение другим агентам. Его можно использовать для описания конкретного рабочего процесса или шага (например, последовательность шагов, сложный поиск, одноэтапное преобразование данных и так далее).

Передача управления — это процесс, при котором агент может передать запрос другому агенту, возвращая его в функцию. В процессе передачи управления также происходит обновление переменных контекста, что позволяет вернуть более полный объект Result.

▶️В репозитории собраны функциональные примеры Swarm:

🟢basic - простые примеры настройки, вызова функций, передача данных и контекстные переменные;

🟢traige agent - пример роя с агентом сортировки, который принимает пользовательские данные и решает, ответить ли на запрос напрямую или передать его агенту по продажам или возврату денег;

🟢weather agent - погодный агент с вызовом функций (запрос по городу и отправка на e-mail);

🟢airlines - мультиагентный пример обработки клиентских запросов в контексте авиакомпании (сортировка запросов, изменения рейсов, отмены бронирований и случаи потери багажа);

🟢support_bot - клиентский бот центра поддержки с несколькими инструментами;

🟢personal shopper - пример роя агентов персонального торгового агента, который может помогать совершать покупки и возвращать заказы;

⚠️ Swarm не использует API Assistants и полностью работает на API Chat Completions.

⚠️ Swarm не предназначен для промышленного использования и не имеет официальной поддержки.

▶️ Локальная установка и запуск:

# Install from PIP
pip install git+https://github.com/openai/swarm.git

# Usage
from swarm import Swarm, Agent
client = Swarm()

def transfer_to_agent_b():
return agent_b

agent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)

agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)

response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)

print(response.messages[-1]["content"])


📌Лицензирование : MIT License.


🖥GitHub
🟡Orchestrating Agents Cookbook


@ai_machinelearning_big_data

#AI #ML #Agents #OpenAI #Swarm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥138👏2
⚡️ INTELLECT-1: первая коллективная децентрализованная тренировка модели с 10 млрд. параметров.

Prime Intellect объявила о запуске INTELLECT-1 — первого децентрализованного процесса обучения модели с 10 млрд. параметров, приглашая всех желающих внести свой вклад в вычисления.

Процесс построен на опубликованном ранее OpenDiLoCo — реализации с открытым исходным кодом метода распределенного обучения с низкой коммуникацией (DiLoCo) от DeepMind. OpenDiLoCo уже успешно применили в обучении модели в 1 млрд. параметров.

Теперь Prime Intellect масштабирует этот подход в 10 раз. Это третий шаг в генеральном плане Prime Intellect по коллективному обучению открытых базовых моделей: от языковых и агентных до научных.

Цель Prime Intellect — поэтапно решить проблему децентрализованного обучения, чтобы AGI был открытым, прозрачным и доступным, предотвращая контроль со стороны централизованных организаций.

▶️Детали проекта INTELLECT-1

INTELLECT-1 — модель с 10 млрд. параметров, основанная на архитектуре Llama-3 и обучающаяся на курируемом наборе данных, который состоит из: 55% Fineweb-edu, 20% DLCM, 20% Stackv2 и 5% OpenWebMath. Общее количество токенов датасета — более 6 трлн.

В обучении используется планировщик скорости обучения WSD , поддерживающий постоянную скорость после начальной фазы warm-up. Ближе к концу обучения, планируется запустить фазу «остывания» для повышения производительности и оптимизации после обучения. Синхронизация сети занимает менее 1 минуты, сводя связь между узлами до 1-2% от общего времени обучения.

▶️Prime: фреймворк для децентрализованного обучения.

Prime — фреймворк для отказоустойчивого обучения и динамического подключения ресурсов. Его основные возможности:

🟢ElasticDeviceMesh: распределенная абстракция для отказоустойчивой связи;

🟢Асинхронное распределенное создание чекпоинтов с минимизацией времени блокировки;

🟢Восстановление чекпоинтов в реальном времени;

🟢Пользовательское ядро Int8 All-Reduce: квантование псевдоградиентов;

🟢Максимальное использование пропускной способности: шардинг псевдоградиентов, технология VPN.

🟢Реализация PyTorch FSDP2 / DTensor ZeRO-3: шардинг весов модели.

🟢Выгрузка тензоров в CPU.

Дорожная карта Prime:

🟠Масштабирование до более крупных и мощных моделей в научных, рассуждающих областях и в понимании программного кода;

🟠Разработка системы безопасного и проверяемого вклада в децентрализованное обучение;

🟠Создание фреймворка для инициации децентрализованного цикла обучения.

Присоединиться к проекту можно арендовав на любое время серверные мощности в личном кабинете Prime Intellect или подключив в нем сторонние облачные сервисы GPU.

Поддержка подключения локальных GPU через фреймворк Prime ожидается в будущем, открыт прием заявок через форму. Посмотреть статус обучения INTELLECT-1 можно по ссылке.

▶️Локальная установка и запуск фреймворка Prime:

# Install uv
curl -LsSf https://astral.sh/uv/install.sh | sh
source $HOME/.cargo/env

# Set up the env
uv venv
source .venv/bin/activate
uv sync --extra all
uv pip install flash-attn --no-build-isolation
git submodule update --init --recursive

# Running DiLoCo:
# !! Single GPU setups are currently not supported !!
# Using 2 GPUs
ZERO_BAND_LOG_LEVEL=DEBUG ./scripts/simulate_multi_node_diloco.sh 2 1 src/zeroband/train.py @configs/debug/diloco.toml

# Using 4 GPUs
ZERO_BAND_LOG_LEVEL=DEBUG ./scripts/simulate_multi_node_diloco.sh 2 2 src/zeroband/train.py @configs/debug/diloco.toml


📌Лицензирование кода : Apache 2.0 License.


🟡Страница проекта
🟡Документация
🟡Arxiv
🟡Датасет
🟡Сообщество в Discord
🟡Дашборд прогресса
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Decentralized #Training
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4710🔥6🤗31
📎 ML: Медицинский дайджест за период 07.10 - 13.10 2024 г.


▶️ Модели машинного обучения и бенчмарки

🔘ONCOPILOT: Интерактивная модель для сегментации опухолей на основе КТ и измерения по RECIST 1.1.

Цель модели - сгенерировать 3D-предсказание объема конкретной анатомической структуры на основе входного изображения и визуальной маркировки.

🔘RespLLM: MLLM для прогнозирования состояния дыхательной системы.

RespLLM использует знания LLM и кросс-модальное внимание для объединения звука и текста чтобы оценить состояние дыхательной системы по аудио.

🔘GlucoBench: набор данных для прогнозирования уровня глюкозы.

GlucoBench - комплексныq ресурс для исследований в области прогнозирования уровня глюкозы на основе данных непрерывного мониторинга глюкозы (CGM).

🔘DiffAbXL: Модель диффузии для оценки аффинности связывания антител.

DiffAbXL - это масштабируемая модель диффузии, разработанная для прогнозирования и ранжирования аффинности связывания антител.


▶️ Фреймворки и методологии

🔘DALL-M: Система дополнения клинических данных с учетом контекста с помощью LLM.

DALL-M - платформа, которая использует LLM для создания новых клинически значимых признаков, дополняя наборы данных рентгеновских снимков с учетом контекста.

🔘ClinicalLab: Платформа для оценки и разработки медицинских агентов, имитирующая реальный клинический диагностический процесс.

ClinicalLab - набор инструментов и методологий, предназначенных для оценки и разработки медицинских агентов на основе LLM, которые могут эффективно имитировать процесс клинической диагностики.

🔘Синтез хирургических наборов данных с помощью диффузионных моделей.

Метод, основанный на диффузионных моделях, который позволяет генерировать реалистичные хирургические изображения с полными аннотациями.


▶️Медицинские LLM-приложения

🔘MMedAgent: Мультимодальный медицинский агент.

MMedAgent предназначен для обработки медицинских изображений разных модальностей и решения задач: grounding, сегментация, классификация, генерация медицинских отчетов (MRG), генерация с извлечением информации (RAG) и визуальные вопросы и ответы (VQA).

🔘Гибридная система для выявления редких заболеваний из неструктурированных клинических отчетов.

Cистема предназначена для решения проблемы идентификации редких заболеваний, используя преимущества как NLP-инструментов, так и LLM.

🔘LLM-AMT: конвейер для повышения точности LLM в задачах QA.

Конвейер, который улучшает работу LLM в медицинской области, добавляя к ним информацию из медицинских учебников.


▶️Исследования и обзоры

🔘Реконструкция изображений компьютерной томографии с малым числом ракурсов.

Исследование, посвященное поиску эффективных методов реконструкции КТ-изображений с ограниченным числом проекций.


🔜 Читать полный дайджест


@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥26👍1312🆒2
🌟 MaskLLM: Обучаемая полуструктурированная разреженность для LLM.

MaskLLM - метод обучения полуструктурированной разреженности для LLM, с которым можно сократить количество используемых параметров без ущерба для качества.

Суть - в моделировании паттернов N:M (где N - количество ненулевых значений в группе из M параметров) в виде обучаемого распределения.

Для дифференцируемой выборки маски используется дискретизация Gumbel Softmax, которая дает возможность проводить сквозное обучение на больших датасетах и получать более точные маски по сравнению с традиционными методами, основанными на эвристических критериях важности параметров.

Главное преимущество MaskLLM - метод может переносить паттерны разреженности между разными задачами и доменами. Это достигается путем обучения общего распределения масок, которое затем можно использовать для настройки на конкретные задачи без необходимости обучения с нуля.

Эффективность MaskLLM оценивали сравнением с другими методами на моделях LLaMA-2, Nemotron-4 и GPT-3.

Результаты показали, что MaskLLM достигает более низкой перплексии на наборе данных Wikitext при использовании 2:4 разреженности. Например, для LLaMA-2 7B MaskLLM достиг перплексии 6.72, в то время как SparseGPT показал результат 10.42.

▶️ Для использования MaskLLM на практике, NVlabs рекомендует использовать Docker. После установки, следуя инструкциям в репозитории, нужно скачать и сконвертировать целевую модель в формат Megatron-LM, подготовить данные для обучения и сгенерировать начальные маски.

После этого можно приступать к обрезке целевой модели, и, по завершению, сделать экспорт обученных разреженных моделей в формат Huggingface для дальнейшего использования.

⚠️ Скрипты и инструкции репозитория ориентированы на запуск MaskLLM-LLaMA-2/3 на одном узле с 8 GPU с тензорным параллелизмом и потребует ~40 ГБ на GPU для сквозного обучения.


📌Лицензирование : NVIDIA Source Code License for MaskLLM (только некоммерческое использование, бесплатно)


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MaskLLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍8🔥3
🌟 Arcee-SuperNova-Medius: модель с 14 млрд. параметрами на архитектуре Qwen2.5.

Модель построена на архитектуре Qwen2.5-14B-Instruct и использует 14 млрд. параметров. В процессе создания использовалась дистилляция с перекрестной архитектурой, объединяющая знания моделей Qwen2.5-72B-Instruct и Llama-3.1-405B-Instruct.

Для этого применялась дистилляция логитов из Llama 3.1 405B с использованием автономного подхода, адаптация к перекрестной архитектуре с использованием mergekit-tokensurgeon для создания версии Qwen2.5-14B, использующей словарь Llama 3.1 405B, а также дистилляция в архитектуру Qwen с использованием сохраненных логитов 405B в качестве цели.

На заключительном этапе, словарь модели Qwen, дистиллированной из Llama, был возвращен к словарю Qwen, а затем был проведен заключительный этап слияния и тонкой настройки.

В процессе обучения использовался набор данных EvolKit.

Arcee-SuperNova-Medius обладает навыками для решения бизнес-задач: поддержка клиентов, техническая поддержка и генерация текстового контента.

Тестирование в показало, что SuperNova-Medius превосходит Qwen2.5-14B и SuperNova-Lite по показателям, связанным с выполнением инструкций (IFEval) и сложным рассуждением (BBH).

▶️ Официальные квантованные версии Arcee-SuperNova-Medius в формате GGUF в разрядностях от 2-bit (5 Gb) до 16-bit (29.5 Gb)


📌Лицензирование : Apache 2.0 License.


🟡Страница проекта
🟡Набор GGUF
🟡Модель


@ai_machinelearning_big_data

#AI #ML #LLM #ArceeAI #SuperNova
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰15👍125🔥5🌚1