227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 LLaMA-Factory: локальный файнтюн моделей с WebUI.

LLaMA-Factory - это фреймворк, который объединяет в себе набор методов манипуляций с моделями и инструментов для гибкой настройки через веб-интерфейс Gradio.

Фреймворк состоит из трех основных модулей:

🟢Model Loader - управляет архитектурами моделей, поддерживая LLM и VLM;

🟢Data Worker - модуль для операций с наборами данных;

🟢Trainer - применяет подходы к обучению: Pre-Training, SFT, Reward Modeling, PPO, DPO, KTO, ORPO, SimPO.

LLaMA-Factory поддерживает методы: freeze-tuning, GaLore, BAdam, LoRA, QLoRA, DORA, LORA+ и PiSSA, а также flash attention, S2 attention, mixed precision training, activation checkpointing и стратегии квантования.

Список поддерживаемых семейств моделей периодически пополняется, его актуальную версию можно посмотреть в репозитории проекта.

Gradio WebUi позволяет настраивать аргументы обучения, визуализировать журналы обучения и кривые потерь в режиме реального времени, а также поддерживает несколько языков: английский, русский и китайский.

На потребительских GPU (24Gb), согласно таблице разработчиков, запустятся методы:

🟠Freeze 16-bit - модели плотностью 7B;

🟠LoRA/GaLore/BAdam 16-bit - модели плотностью 7B;

🟠QLoRA 8-bit - модели плотностью 7B, 13B;

🟠QLoRA 4-bit - модели плотностью 7B, 13B, 30B;

🟠QLoRA 2-bit - модели плотностью 7B, 13B, 30B и 70B.

⚠️ Перед локальным запуском внимательно ознакомьтесь с требованиями по пакетному окружению, рекомендациями по установке для разных архитектур, инструкцией по подготовке данных.

▶️ Проект может быть инсталлирован : Docker, Docker w\o Composer, OpenAI-style API and vLLM и классическим способом установки из репозитория.


📌Лицензирование : Apache 2.0 License.


🟡Документация (китайский)
🟡Google Collab
🟡Arxiv
🟡Demo
🟡Сообщество в Discord
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Finetune #LlaMAFactory
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍1552😈1
🌟 CogVideoX Factory: оптимизация файнтюна моделей генерации видео семейства CogVideoX.

CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.

Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".

Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:

🟢CPUOffloadOptimizer - перемещает обучаемые параметры и градиенты модели в CPU, освобождая память GPU для других операций;

🟢DeepSpeed Zero2 - распределяет параметры модели по нескольким GPU, что позволяет обучать большие модели, которые иначе не поместились бы в память одного GPU;

🟢LoRA - метод тонкой настройки, который изменяет только небольшое подмножество параметров модели, сохраняя при этом основную часть весов неизменной.

CogVideoX Factory предлагает сценарии обучения:

🟠LoRA для "text-to-video": cкрипт train_text_to_video_lora.sh;

🟠LoRA для "IMG-to-video": cкрипт train_image_to_video_lora.sh;

🟠SFT всей модели для "text-to-video": скрипт train_text_to_video_sft.sh.

⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт prepare_dataset.py играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.

CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.


📌Лицензирование : Apache 2.0 License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍95
📌Исчерпывающий гайд по методам тонкой настройки больших языковых моделей.

Подробное руководство от Ирландского центра искусственного интеллекта CeADAR по практическому применению и оптимизации процесса тонкой настройки LLM.

В руководстве представлен анализ подходов обучения: контролируемые, неконтролируемые и инструктивные подходы. Гайд подробно рассматривает подготовку наборов данных, выбор подходящей модели, настройку параметров и оценку производительности.

Это руководство подходит как для начинающих, так и для опытных специалистов, которые хотят эффективно настраивать и использовать LLM для решения различных задач в области обработки естественного языка.

Несмотря на техническую сложность темы, авторы сделали материал доступным для широкой аудитории, используя понятный язык и наглядные примеры.

▶️Содержание:

🟢Введение
🟢Семиэтапный конвейер тонкой настройки LLM
🟢Этап 1: Подготовка данных
🟢Этап 2: Инициализация модели
🟢Этап 3: Настройка обучения
🟢Этап 4: Выбор методов тонкой настройки и соответствующих конфигураций модели
🟢Этап 5: Оценка и валидация
🟢Этап 6: Развертывание
🟢Этап 6: Мониторинг и обслуживание
🟢Платформы и фреймворки для тонкой настройки LLM
🟢Мультимодальные LLM и их тонкая настройка
🟢Частые проблемы, этика и ответственность


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #Guide #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3113🔥8