Media is too big
VIEW IN TELEGRAM
AMD подтвердила, что планирует возобновить поставки ускорителей MI308 в Китай. Новость последовала всего через несколько часов после аналогичного объявления от Nvidia о разрешении на продажу чипов H20. Министерство торговли США уведомило AMD, что ее заявки на экспортные лицензии будут рассмотрены с высокой вероятностью одобрения.
Это событие - серьезный сдвиг в политике Вашингтона, который ранее ввел жесткие ограничения на экспорт ИИ-чипов. Запреты нанесли значительный финансовый ущерб американским компаниям, AMD оценивала свои потенциальные потери в 800 миллионов долларов. Отмена ограничений последовала за критикой со стороны лидеров индустрии, которые утверждали, что подобные запреты неэффективны и лишь стимулируют Китай к созданию собственных технологий, ослабляя глобальное лидерство США в сфере ИИ.
tomshardware.com
Amazon запустил превью Kiro - IDE на основе ИИ. В отличие от простых ассистентов для вайб-кодинга, Kiro позиционируется как инструмент для полного цикла разработки: от концепции до вывода в продакшен.
Ключевыми особенностями стали модули Specs и Hooks. Specs преобразовывают общие запросы в структурированные техзадания, пользовательские истории, диаграммы и схемы API, которые остаются синхронизированными с кодом. Hooks - это агенты, работающие в фоне: они могут обновлять тесты при сохранении компонента или проверять код на безопасность перед коммитом.
Kiro построена на базе Code OSS и совместима настройками и плагинами VS Code. В режиме отрытого превью среда использует модели от Anthropic. Продукт доступен в трех тарифах: Free, Pro и Pro+.
kiro.dev
Anthropic запустила комплексное решение для анализа рынков и принятия инвестиционных решений. Платформа объединяет различные источники данных: от рыночных котировок до внутренних баз на платформах Databricks и Snowflake в едином интерфейсе. В основе лежит семейство моделей Claude 4, которые, по заявлению компании, показывают высокие результаты в финансовых задачах.
Платформа глубоко интегрирована с ведущими поставщиками данных: S&P Global, FactSet, PitchBook и Snowflake. Для внедрения в корпоративную среду привлечены консультанты из Deloitte, KPMG и PwC. Платформа уже доступна на AWS Marketplace, а в будущем появится и в Google Cloud.
anthropic.com
Google расширила возможности NotebookLM, добавив в него курируемую библиотеку публичных блокнотов. В ней представлен контент от крупных изданий, исследователей, авторов и некоммерческих организаций. Пользователи могут читать оригинальные тексты, задавать по ним вопросы и получать саммари со ссылками на первоисточники.
Обновление также принесло новые функции: автоматически сгенерированные аудиообзоры и майнд-карты для быстрой навигации по теме. Среди первых доступных материалов: советы по долголетию, путеводитель по Йеллоустону, произведения Шекспира и финансовая отчетность крупных компаний.
blog.google
Thinking Machines Lab, который привлек 2 млрд. долларов от фонда a16z, представит свой первый продукт в ближайшие пару месяцев.
Он будет мультимодальным, содержать значительный компонент открытого кода и предназначен для исследователей и стартапов, разрабатывающих свои собственные модели.
Mira Murati в сети Х
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍52❤24🔥12😁1
ByteDance в соавторстве с Пекинским университетом и Карнеги Меллон разработали MoVieS, feed-forward модель, которая из обычного монокулярного видео за секунду синтезирует полноценную 4D-сцену, объединяя в себе геометрию, внешний вид и, что самое важное, движение.
В основе метода лежит идея представления динамической сцены с помощью «динамических сплэттер-пикселей». Если вы знакомы с 3D Gaussian Splatting, то поймете сразу: модель представляет каждый пиксель входного видео как гауссов примитив в 3D-пространстве.
Новизна MoVieS в том, что она не просто определяет их статичные параметры (положение, цвет, прозрачность), но и предсказывает вектор их движения во времени. Иными словами, для каждой частицы в сцене модель знает, где она будет в любой заданный момент.
Архитектурно MoVieS построена на геометрически предобученном трансформере VGGT, который обрабатывает кадры видео. Далее в дело вступают три специализированные «головы»:
Такой единый фреймворк позволяет обучать модель на самых разнородных датасетах: где-то есть разметка глубины, где-то - трекинг точек, а где-то - только видео.
MoVieS - это еще про скорость. Согласно техотчету, на генерацию сцены уходит меньше секунды (0.93 с), тогда как у альтернативных методов на это уходят десятки минут.
При этом качество на бенчмарках динамических сцен (DyCheck и NVIDIA) либо на уровне, либо превосходит SOTA решения.
Но самое интересное - это zero-shot возможности. Модель, обученная по сути на задаче синтеза новых ракурсов, внезапно оказывается способна без всякого дополнительного обучения сегментировать движущиеся объекты и оценивать scene flow (попиксельный поток в 3D). Достаточно просто посмотреть на предсказанные векторы движения.
⚠️ Кода для инференса, обучения и чекпоинтов пока нет, но обещают.
@ai_machinelearning_big_data
#AI #ML #4D #MoVieS #ByteDance
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍52❤33🔥14🐳1
Пока мы с вами обсуждаем архитектуры новых моделей, на наших глазах разворачивается битва за конечного пользователя, и чат-боты, похоже, начинают в ней побеждать.
Аналитики из Sensor Tower опубликовали отчет, который в сухих цифрах показывает, что ChatGPT, Gemini и другие их собратья перестали быть игрушкой для IT-сообществ и превратились в реальную угрозу для поисковых гигантов.
Sensor Tower - платформа цифровой аналитики и один из авторитетных источников аналитики мобильных приложений, цифровой рекламы, розничной медиарекламы и данных об аудитории для крупнейших мировых брендов и создателей приложений.
Аудитория ChatGPT уже перевалила за 500 млн. MAU, причем этот рубеж был достигнут менее чем за 2 года. Но что еще важнее, его аудитория становятся нетехнической.
Год назад 44% всех запросов к ChatGPT были связаны с разработкой ПО, то сегодня эта доля упала до 29%.
А вот категория «Экономика, финансы и налоги» взлетела с 4% до 13%.
Проще говоря, люди все чаще спрашивают у ИИ не как написать код, а как составить бюджет или разобраться в инфляции. Это означает выход в мейнстрим.
В апреле 2025 года время, проведенное пользователями в приложении ChatGPT, взлетело на 98% по сравнению с прошлым годом. За тот же период время, проведенное в приложениях традиционных поисковиков, упало на 3%.
Более того, уже почти треть (31%) пользователей поисковых приложений в США также активно используют ChatGPT. Год назад их было всего 13%. Аудитории начинают пересекаться, и чат-бот явно перетягивает одеяло на себя.
В топе реферальных ссылок: YouTube, Wikipedia и National Library of Medicine. То есть люди приходят за знаниями. Но тут же рядом Amazon (помощь в покупках), GitHub и arXiv (IT и ML). Забавно, что сам Google, как поисковая система, находится на 6 месте в этом списке.
Чат-бот становится новой точкой входа в интернет, которая сама решает, куда направить пользователя.
Ранние последователи ИИ, установившие ChatGPT еще в 2023 году, уже проводят в приложениях Google на 6% меньше времени. Новички пока не изменили привычек, но это, скорее всего, лишь вопрос времени.
Все эти показатели указывают на то, что борьба за "реферал от ИИ" становится главным полем боя для брендов.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍64❤24🔥14🫡4🤬1👌1💋1🤗1
Он провёл 14 месяцев в applied-команде, разрабатывая Codex — кодинг-агента, который за 7 недель прошёл путь от первой строки к публичному запуску. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.
Он работал на Python, жег огромные GPU-бюджеты, спринтил с командой почти без выходных.
Автор уволился,чтобы сделать свой проект, но называет этот год самым интенсивным и полезным в карьере.
За год OpenAI выросла с 1000 до 3000 человек. Внутренние процессы постоянно перестраиваются, для разрабов Slack стал полноценным «офисом», а почта почти исчезла из работы.
В командах идеи идут снизу вверх — и кто первым закомитит свой код, тот и задаёт стандарт. Главная метрика успеха — не презентации, а работающий код.
Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри.
Codex - это огромный монорепозиторий почти целиком сотоязий из Python кода. Все сервисы поднимаются через FastAPI, а данные проходят через Pydantic — это даёт простую валидацию и ускоряет разработку. В проекте есть немного Go и Rust в основном в сетевых компонентах, но это редкие исключения.
Codex сделали крошечной командой за 7 недель. Автор вспоминает бессонные ночи, утренние подъёмы и выходные в офисе. Команда была сильной, многие ушли от Цукерберга к Сэме— и это чувствуется по уровню инфраструктуры.
OpenAI —выгладит как странный гибрид: он подобен научному центру в стиле Лос-Аламоса, который случайно сделал самый хайповый продукт десятилетия. . Руководство комании активно отвечает в Slack, 600 000+ pull request'ов за 53 дня после запуска Codex!
OpenAI — это не просто «компания создавашая GPT». Это лаборатория, где безумная скорость сочетается с реальным и крутым продуктом. Они не боятся выкатывать новые фичи, не скрывают свой хаос и делают очень много интересного. Не идеальная система, но там правда делают вещи.
👉Полную статью можно почитать -здесь
@ai_machinelearning_big_data
#openai #ai #ml #llm #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥132👍51❤41🙈7🫡3🤷♂2😁2🍾1
Media is too big
VIEW IN TELEGRAM
OpenAI добавила Record mode для подписчиков ChatGPT Plus, использующих десктопное приложение на macOS. Инструмент позволяет записывать до 120 минут аудио, например, встречи, мозговые штурмы или голосовые заметки. По окончании записи ChatGPT автоматически создает редактируемое резюме на специальном холсте внутри приложения.
OpenAI в сети X
Google начала развертывание в США новой функции на базе ИИ, которая позволяет поиску самостоятельно обзванивать местные компании для сбора информации. Теперь при поиске услуг пользователь сможет нажать на специальную кнопку, чтобы ИИ уточнил цены и свободное время. Для этого система задаст несколько уточняющих вопросов, после чего совершит звонок.
Google говорит, что при каждом вызове система представляется как автоматизированный ассистент от имени пользователя. Новая функция доступна для всех пользователей в США, для подписчиков планов AI Pro и AI Ultra предусмотрены увеличенные лимиты этой функции.
techcrunch.com
Microsoft выпустила для участников программы Windows Insiders обновление Copilot Vision, которое позволяет ИИ-ассистенту сканировать и анализировать весь рабочий стол или окно конкретного приложения. Ранее эта функция могла работать только с двумя приложениями одновременно.
По заявлению Microsoft, новая возможность позволит пользователям получать подсказки и рекомендации в режиме реального времени. Например, можно попросить Copilot помочь с улучшением резюме, дать совет по творческому проекту или даже подсказать, что делать в новой игре.
blogs.windows.com
В эвристическом дивизионе финала мирового чемпионата AtCoder победу одержал человек, выступавший под ником FakePsyho. Он сумел опередить систему от OpenAI, которая лидировала большую часть дня и в итоге заняла 2 место среди 12 финалистов. Победа была одержана в последние 80 минут соревнования.
AtCoder World Finals Heuristic Test - это престижный конкурс по решению сложных задач оптимизации (NP-hard). В отличие от традиционных олимпиад, здесь требуется найти не единственно верный, а наилучший приближенный ответ за ограниченное время.
atcoder.jp
Марк Цукерберг рассказал, что в ближайшем будущем его компания построит несколько гигантских дата-центров. По его словам, первый из них, проект «Prometheus», будет запущен в 2026 году, а другой, «Hyperion», в перспективе сможет масштабироваться до мощности в 5 гигаватт.
Цукерберг подчеркнул масштаб планов, заявив, что только один из строящихся кластеров «покроет значительную часть площади Манхэттена». Он также сослался на отчет SemiAnalysis, согласно которому гигант соцсетей станет первой ИИ-лабораторией, которая введет в эксплуатацию суперкластер мощностью более 1 ГВт.
theguardian.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61❤33🥱9👏6🥰4❤🔥1
Новость для тех, кто планирует поступление в магистратуру в этом году — МТС открывает набор на программу по искусственному интеллекту на ФКН ВШЭ
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя🥚
Самое важное:
– 30 оплачиваемых мест от МТС;
– Обучение проходит в очном формате в московском кампусе ВШЭ;
– Занятия ведут преподаватели ВШЭ и действующие эксперты-практики из МТС и MTS AI, а для проектов можно использовать виртуальную инфраструктуру компании;
– После и во время обучения можно получить оффер;
– В канале абитуриентов делимся новостями и помогаем с подготовкой к поступлению
В программе передовые методы машинного и глубинного обучения: большие языковые модели, генеративные нейросети, инструменты компьютерного зрения и распознавания естественного языка.
Подробная информация о программе и документах на сайте. Ждем тебя
Please open Telegram to view this post
VIEW IN TELEGRAM
❤39🤣16👍11🔥8😁3💘2🙊2🤨1
Media is too big
VIEW IN TELEGRAM
Amazon анонсировала S3 Vectors - нативную поддержку векторного поиска прямо внутри своего вездесущего объектного хранилища. Заявлено, что это может снизить затраты на хранение и обработку векторов до 90%.
По сути, AWS предлагает не отдельный сервис, а новый тип бакета
vector bucket
. Внутри него вы создаете векторные индексы, указывая размерность векторов и метрику расстояния (косинусную или евклидову).Вы просто загружаете в индекс свои эмбеддинги вместе с метаданными для фильтрации, а S3 берет на себя всю грязную работу по хранению, автоматической оптимизации и обеспечению субсекундного ответа на запросы. Никакого управления инфраструктурой.
Один бакет может содержать до 10 тысяч индексов, а каждый индекс, в свою очередь, десятки миллионов векторов.
S3 Vectors бесшовно интегрируется с Bedrock Knowledge Bases. Теперь при создании базы знаний для RAG-приложения можно просто указать S3-бакет в качестве векторного хранилища.
Процесс создания RAG-пайплайна для тех, кто уже живет в облаке AWS, упрощается до нескольких кликов. То же самое касается и SageMaker Unified Studio, где эта интеграция тоже доступна из коробки.
AWS предлагает гибкую, многоуровневую стратегию. Нечасто используемые или «холодные» векторы можно экономично хранить в S3 Vectors. А когда для части данных потребуется максимальная производительность и низкая задержка в реальном времени, например, для системы рекомендаций, их можно быстро экспортировать в OpenSearch.
Это очень прагматичный инженерный подход, позволяющий балансировать между стоимостью и производительностью.
Пока сервис находится в статусе превью и доступен в регионах US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Frankfurt), and Asia Pacific (Sydney) Regions.
Попробовать S3 Vectors можно в Amazon S3 console.
@ai_machinelearning_big_data
#AI #ML #RAG #Amazon
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥56❤17👍17🥰6💯1
Что делает Marin особенной:
— Полностью открыты не только веса, но показан весь процесс обучения: код, данные, гиперпараметры модели, логи, эксперименты — всё доступно на GitHub
— Модель обучена на 12.7 трлн токенов и в 14 из 19 тестов обошла Llama 3.1 8B
— Лицензия Apache 2.0, всё можно использовать, модифицировать и воспроизводить
— Levanter + JAX обеспечивают bit‑exact повторяемость и масштабируемость на TPU/GPU
Проект позиционируется как открытая лаборатория: каждый эксперимент оформляется через pull request, логируется в WandB, обсуждается в issue и фиксируется в истории репозитория. Даже неудачные эксперименты сохраняются ради прозрачности.
Выпущены две версии:
- Marin‑8B‑Base — сильный base-модель, превосходит Llama 3.1 8B
- Marin‑8B‑Instruct — обучена с помощью SFT, обгоняет OLMo 2, немного уступает Llama 3.1 Tulu
Это не просто открытые веса, а новый стандарт для научных вычислений в эпоху больших моделей.
* JAX — это фреймворк от Google для научных и численных вычислений, особенно популярен в сфере машинного обучения.
**TPU (Tensor Processing Unit) — это специализированный чип от Google, созданный для ускорения AI-задач.
@ai_machinelearning_big_data
#ai #ml #tpu #jax #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥73❤25👍19🥰2💯2🤔1
🎧 Топ кллаборация: NotebookLM × The Economist
Представьте: вы слушаете свежие экономические обзоры как обычный подкаст, но в любой момент можете *вклиниться в диалог*, задать вопрос или высказать своё мнение.
💡 Это не просто чтение — это интерактивный диалог с материалом.
Именно такой сценарий реализован в новом AI-ноутбуке *The World Ahead 2025* от Google и *The Economist*.
Отличный пример того, как может выглядеть будущее персонализированной аналитики и медиа.
🔗 Попробовать можно здесь:
https://notebooklm.google.com/notebook/5881d15d-7b82-4002-8613-df59b6eece4c
@ai_machinelearning_big_data
#notebooklm #ml #ai #genai
Представьте: вы слушаете свежие экономические обзоры как обычный подкаст, но в любой момент можете *вклиниться в диалог*, задать вопрос или высказать своё мнение.
💡 Это не просто чтение — это интерактивный диалог с материалом.
Именно такой сценарий реализован в новом AI-ноутбуке *The World Ahead 2025* от Google и *The Economist*.
Отличный пример того, как может выглядеть будущее персонализированной аналитики и медиа.
🔗 Попробовать можно здесь:
https://notebooklm.google.com/notebook/5881d15d-7b82-4002-8613-df59b6eece4c
@ai_machinelearning_big_data
#notebooklm #ml #ai #genai
👍85🔥31❤20😁5
Media is too big
VIEW IN TELEGRAM
ChatGPT Agent - новый режим, который позволяет чат-боту управлять виртуальным компьютером для автоматизации многошаговых процессов с минимальным участием пользователя.
Агент может работать с календарем, генерировать отчеты, запускать код и создавать редактируемые презентации, используя коннекторы к Gmail и GitHub. Он объединяет в себе наработки предыдущих проектов компании, Operator и Deep Research, и работает на основе специально обученной модели. Она, по словам OpenAI, установила внутренние рекорды на сложных бенчмарках Humanity’s Last Exam и SpreadsheetBench.
Функция уже доступна для платных подписчиков с различными лимитами (400 для Pro и 40 для Plus), но пока недоступна в Европе. Для безопасности агент запрашивает подтверждение перед выполнением необратимых действий, а финансовые транзакции на данный момент ограничены.
openai.com
В режиме Deep Research бот планирует запросы, анализирует веб-источники и обобщает полученную информацию. Помимо этого, в Le Chat появились нативная поддержка многоязычных рассуждений, расширенные инструменты для редактирования изображений и новое рабочее пространство «Проекты» для организации связанных чатов и документов.
Хотя обновление доступно на всех тарифах, включая бесплатный, Mistral делает ставку на корпоративных клиентов за счет возможности подключать бота к корпоративным данным локально.
mistral.ai
Adobe выпустила масштабное обновление для Firefly, добавив в него функции для работы с аудио и видео. Теперь доступна генерация звуковых эффектов по текстовому описанию или демонстрации ритма голосом, а функция Text to Avatar создает виртуального ведущего из сценария и набора фонов.
Еще добавили новые инструменты редактирования стиля, кадрирования и композиции для нескольких клипов. Adobe заявила об улучшении качества генерации движения в собственной видеомодели и расширила интеграцию с Veo 3, Pika 2.2 и Luma AI Ray 2. Обновления уже доступны в веб-приложении Firefly.
zdnet.com
Reflection AI анонсировал Asimov ИИ-помощника, предназначенного для глубокого анализа кодовых баз в масштабе всей организации. В отличие от ассистентов, сфокусированных на написании кода, Asimov создает единый источник инженерных знаний. Он анализирует не только код, но и архитектурную документацию, обсуждения на GitHub и историю переписок, формируя целостное понимание проекта.
Инженеры могут напрямую передавать агенту неформализованный контекст (например, «@asimov помни, что X работает так-то»), который становится доступен всем. Технически это реализовано через мультиагентную архитектуру: множество малых агентов ищут информацию, а один большой синтезирует ответ. В слепых тестах ответы Asimov были предпочтительнее в 60-80% случаев. Продукт пока в раннем доступе, открыта запись в вэйт-лист.
reflection.ai
Вслед за запуском аниме-девушки Ani, Илон Маск анонсировал появление ее мужского аналога. По его словам, характер нового компаньона будет вдохновлен образами Эдварда Каллена из «Сумерек» и Кристиана Грея из «50 оттенков серого».
В отличие от «милой и одержимой тобой» Ani, мужская версия будет иметь более мрачный и задумчивый характер. Сейчас Маск собирает предложения по имени для нового виртуального спутника.
Elon Musk в сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍76❤35🔥19🤣3👨💻3👏2👌1
Media is too big
VIEW IN TELEGRAM
Техгигант стал первым крупным разработчиком, публично отвергшим Кодекс по регулированию моделей ИИ общего назначения, предложенный Еврокомиссией. Глава по глобальным вопросам компании назвал инициативу «чрезмерной» и заявил, что она будет «душить разработку и внедрение передовых моделей в Европе».
Отказ от подписания создает новую почву для конфронтации между американским IT-бизнесом и Брюсселем. Несмотря на это, компания все равно будет обязана соблюдать нормы AI Act, которые вступают в силу 2 августа, иначе ей грозят крупные штрафы.
bloomberg.com
Исследовательская группа выпустила предварительную версию своего бенчмарка нового поколения ARC-AGI-3. Он предназначен для оценки способности ИИ-систем к интерактивному мышлению в динамической среде. В отличие от статичных тестов, новый набор задач требует от ИИ-агентов планировать, адаптироваться и реагировать в реальном времени.
Превью включает 3 из 6 запланированных игровых сред и публичный API для тестирования. Первые результаты оказались неутешительными для актуальных моделей: топовые системы, включая GPT-4, показали результат 0%, в то время как люди справились на 100%.
Чтобы стимулировать прогресс в этой области, ARC объявила конкурс с призовым фондом в 10 000 долларов для команд, которые смогут улучшить производительность своих агентов. Полный запуск бенчмарка запланирован на начало 2026 года.
arcprize.org
DuckDuckGo добавил в поиск по картинкам новую функцию, она отфильтровывает сгенерированные искусственным интеллектом изображения. Опция доступна в виде выпадающего меню на вкладке «Изображения», а также может быть активирована в основных настройках поиска.
В компании заявили, что это ответ на жалобы пользователей, которые считают, что синтетические картинки «засоряют» выдачу и мешают находить настоящие фотографии. Механизм фильтрации основан на открытых, вручную курируемых черных списках. Хотя инструмент не гарантирует 100% отсева, в DuckDuckGo ожидают, что он значительно сократит количество ИИ-контента в результатах поиска.
DuckDuckGo в сети X
Google сделала Veo 3 доступной для разработчиков через Gemini API. Теперь они могут встраивать возможности по созданию видео в собственные приложения. Пока API поддерживает только генерацию из текста, но скоро появится и функция image-to-video, уже работающая в приложении Gemini. Для начала работы Google предлагает шаблоны SDK и требует активный биллинг в Google Cloud.
Стоимость генерации через API - 0.75 доллара за секунду видео со звуком в разрешении 720p с частотой 24 кадра в секунду. Таким образом, ролик длительностью 8 секунд обойдется в 6 долларов, а пятиминутный - в 225 долларов. Учитывая необходимость нескольких попыток для получения нужного результата, итоговая стоимость может оказаться весьма высокой. В Google, вероятно, рассчитывают, что для некоторых сценариев это все равно будет выгоднее традиционного видеопроизводства.
developers.googleblog.com
Компания рассказала, что применила ИИ для производства спецэффектов в аргентинском научно-фантастическом сериале «El Eternauta». С помощью генеративного ИИ была создана сцена обрушения здания в Буэнос-Айресе, которую создала внутренняя студия Netflix Eyeline Studios. Кадры были напрямую включены в финальный монтаж.
По словам со-исполнительного гендиректора Теда Сарандоса, рабочий процесс с использованием ИИ позволил завершить сцену в 10 раз быстрее по сравнению с традиционными VFX-инструментами. Он подчеркнул, что компания рассматривает ИИ не как способ удешевления, а как «невероятную возможность помогать авторам делать фильмы лучше». Netflix тестирует технологию и в других областях: голосовой поиск по контенту и в рекламе.
reuters.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤60👍39🔥9🤔5
Т-Банк релизнул модель с гибридным ризонингом в опенсорс.
T-Pro 2.0 дообучили на основе Qwen3 32B, улучшив качество и скорость генерации на русском языке.
Вместе с моделью впервые выложили инструктивный датасет. Как дообучали модель сегодня рассказали на Turbo ML конфе и выложили на хабр.
На основе токенизатора Qwen3 и с помощью расширения его кириллической части более, чем в 5 раз, разработчики получили улучшенный токенизатор для мультилингвальных моделей. По итогу токенизатор оказался на 30% более эффективен для русского языка. Затем за счет плотного токенизатора на двух доменах (чатовые запросы ru-arena-hard и олимпиадные математические задачи из T-Math) ускорили инференс.
Следующим шагом было дообучение на большом русскоязычном инструктивном корпусе. Далее модель дообучали на более чистом SFT-сете, сформированном из разнообразных промптов, собранных вручную, из открытых источников и переводов англоязычных наборов данных. Для формирования итогового датасета ответы на инструкции генерировались с помощью более мощных моделей, таких как DeepSeek-V3 0324 и Qwen3-235B-A22B. Это позволило обеспечить высокий уровень точности и релевантности.
На стадии Preference tuning для обучения DPO сформировали набор данных с фильтрацией по длине и типу для general-инструкций и сохранением баланса доменов для reasoning-инструкций.
На финальном этапе Speculative decoding в качестве драфт- модели выбрали EAGLE 1 с генерацией драфта во время инференса с помощью tree attention согласно EAGLE 2.
Для того, чтобы оценить способности моделей к ведению диалога, следованию инструкциям и решению задач разработчики использовали LLM-as-a-judge-арены: Arena Hard Ru, Arena Hard 2 и арену WildChat Hard Ru. В последней в качестве бейзлайна использовались ответы модели o3-mini, а “судьей” для всех арен выступал DeepSeek V3 0324. Для оценки знаний о мире и общим логическим способностям моделей на русском языке использовались бенчмарки MERA, MaMuRAMu, ruMMLU, ruMMLU-Pro.
Бенчмарки AIME, MATH-500, GPQA Diamond, Vikhr Math, Vikhr Physics, LiveCodeBench v4_v5 позволили оценить способности reasoning-модели к рассуждениям и решению сложных задач. Англоязычные бенчмарки были целиком локализованы на русский язык ИИ-тренерами: ruAIME, ruMATH-500, ru GPQA Diamond, ruLCB. Компания также использовала свой бенчмарк Т-Math, чтобы расширить оценку математических способностей на русском языке.
Дообучение даже продвинутых LLM позволяет управлять стоимостью инференса и скоростью генерации, дообучать важные домены (саппорта или распределение внутреннего промтинга), уменьшить количества артефактов и проблем с русским языком.
Модель T-Pro 2.0 доступна по лицензии Apache 2.0, ее можно бесплатно использовать как для решения задач в промптинге, так и для дообучения на свои задачи.
▪️Hugging face: T-Pro 2.0
Датасет T-wix
@ai_machinelearning_big_data
#news #ai #ml #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍87❤39🔥29🤔7😁5🗿5💯2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🔋Робот, умеющий сам менять себе батарею
Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.
@ai_machinelearning_big_data
#ai #ml #robots
Китайская компания UBTech представила Walker S2 — гуманоидного робота нового поколения, способного автономно извлекать и заменять собственную батарею.
@ai_machinelearning_big_data
#ai #ml #robots
👍148❤45🔥19😢9😁4🤬4🦄2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.
Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя
cudf.pandas
.Для примеры были взяты:
🧊 В общей сложности ~18M строк
Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз
Код скрипта не менялся вообще — тот же pandas, но на GPU.
Это один из примеров, где ускорение достигается без переписывания логики кода.
@ai_machinelearning_big_data
#datascience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤122👍39🔥18😁3🤔3🤣2
MWS Cloud включается в игру: запускает Data Lakehouse
Пока все обсуждают, как внедрять LLM, в MWS Cloud сделали ход: вышли с собственной платформой для хранения и обработки больших данных — MWS Data Lakehouse. Это уже не просто база или витрина, это полноценный фундамент для обучения, инференса и аналитики.
Ключевая особенность — универсальность.
Платформа работает с любыми типами данных: структурированными, неструктурированными, векторными. Поддержка Apache Parquet, Iceberg, Greenplum, Postgres, запуск в Kubernetes, объектное S3-хранилище. Всё, что нужно, чтобы компания могла: обучать ML/LLM модели, строить BI-отчёты, прогнозировать, сегментировать, оптимизировать. И всё это без копирования данных между системами.
Главное — цифры.
Платформа ускоряет обработку данных в 23 раза. Хранилище используется на 40% экономичнее. В 2,5 раза выше эффективность ИТ-персонала. Витрины данных считаются в 2 раза быстрее.
То есть платформа не просто "поддерживает ИИ" — она позволяет его внедрять в реальных бизнес-процессах, а не в пилотах и презентациях.
Безопасность и масштабируемость.
Встроенные инструменты шифрования, маскирования, аудита, контроль доступа. Централизованное управление, масштабирование без простоев. Можно запускать кластеры под разные команды и сценарии параллельно — без дублирования данных.
Контекст: рынок меняется.
Компании всё активнее вкладываются в инструменты, которые позволяют работать с ИИ на проде, а не просто тестировать гипотезы. Lakehouse — архитектура, к которой уже перешли десятки тысяч компаний на Западе. MWS Cloud предлагает такую же модель — внутри российской облачной экосистемы.
И да: MWS Data Lakehouse — часть экосистемы MWS Data, включающей 25+ сервисов для хранения, аналитики и AI.
Почему это важно.
ИИ уже давно не хобби айтишников. Это трансформация всей ИТ-архитектуры компаний. А без таких платформ запуск ИИ-проектов становится дорогим, медленным и уязвимым.
Именно поэтому сейчас выигрывают не те, у кого «есть данные», а те, у кого есть инфраструктура, чтобы эти данные реально использовать.
@ai_machinelearning_big_data
#data #ai #ml #infrastructure #mts
Пока все обсуждают, как внедрять LLM, в MWS Cloud сделали ход: вышли с собственной платформой для хранения и обработки больших данных — MWS Data Lakehouse. Это уже не просто база или витрина, это полноценный фундамент для обучения, инференса и аналитики.
Ключевая особенность — универсальность.
Платформа работает с любыми типами данных: структурированными, неструктурированными, векторными. Поддержка Apache Parquet, Iceberg, Greenplum, Postgres, запуск в Kubernetes, объектное S3-хранилище. Всё, что нужно, чтобы компания могла: обучать ML/LLM модели, строить BI-отчёты, прогнозировать, сегментировать, оптимизировать. И всё это без копирования данных между системами.
Главное — цифры.
Платформа ускоряет обработку данных в 23 раза. Хранилище используется на 40% экономичнее. В 2,5 раза выше эффективность ИТ-персонала. Витрины данных считаются в 2 раза быстрее.
То есть платформа не просто "поддерживает ИИ" — она позволяет его внедрять в реальных бизнес-процессах, а не в пилотах и презентациях.
Безопасность и масштабируемость.
Встроенные инструменты шифрования, маскирования, аудита, контроль доступа. Централизованное управление, масштабирование без простоев. Можно запускать кластеры под разные команды и сценарии параллельно — без дублирования данных.
Контекст: рынок меняется.
Компании всё активнее вкладываются в инструменты, которые позволяют работать с ИИ на проде, а не просто тестировать гипотезы. Lakehouse — архитектура, к которой уже перешли десятки тысяч компаний на Западе. MWS Cloud предлагает такую же модель — внутри российской облачной экосистемы.
И да: MWS Data Lakehouse — часть экосистемы MWS Data, включающей 25+ сервисов для хранения, аналитики и AI.
Почему это важно.
ИИ уже давно не хобби айтишников. Это трансформация всей ИТ-архитектуры компаний. А без таких платформ запуск ИИ-проектов становится дорогим, медленным и уязвимым.
Именно поэтому сейчас выигрывают не те, у кого «есть данные», а те, у кого есть инфраструктура, чтобы эти данные реально использовать.
@ai_machinelearning_big_data
#data #ai #ml #infrastructure #mts
👍47❤21🔥16😁5🥱3
China Telecom совместно с TeleAI спроектировали фреймворк AI Flow, который рассматривает ИИ и сети передачи данных как единую систему.
AI Flow - это не просто очередной метод оптимизации, а цельная парадигма. Она предлагает отойти от идеи монолитного ИИ к распределенному и коллаборативному, где интеллект может перетекать по сети туда, где он в данный момент нужнее всего и где для него есть ресурсы.
Идея в том, чтобы разумно распределять нагрузку: простейшие операции выполняются на самом гаджете, более сложные и требующие низкой задержки — на ближайшем edge-сервере, а самое тяжелые задачи и ресурсоемкий инференс остаются в облаке.
AI Flow предлагает конкретные механизмы для такой концепции - спекулятивное декодирование, где легкая модель на устройстве быстро генерирует черновик ответа, а мощная модель на эдже его лишь верифицирует и корректирует.
Это не просто набор моделей разного размера, а целое семейство с архитектурно согласованными скрытыми представлениями.
Маленькая, средняя и большая модели устроены настолько похоже, что они могут бесшовно передавать друг другу эстафету инференса.
Модель на смартфоне обрабатывает первые несколько слоев, а затем ее промежуточный результат подхватывает модель на сервере и продолжает вычисления ровно с того же места, без какого-либо дополнительного преобразования данных.
Пайплайн AI Flow делает возможным взаимодействие разных моделей, от LLM и VLM до диффузионных генераторов.
Через такую коллаборацию рождается эмерджентный интеллект – коллективная интуиция, превышающая возможности отдельных сетей, где несколько агентов генерируют черновые решения, затем сервер-оркестратор выбирает лучшие фрагменты, объединяет их и возвращает итоговый ответ для уточнения с учетом контекста каждого из них.
В этом и фишка: после такой синергии ответ становится богаче и более осмысленным, ведь сходятся разные точки зрения и узкопрофильные знания моделей-участников.
Ее крупнейшая ветвь содержит 7 млрд. параметров и способна порождать early-exit подсети с эффективным числом параметров в 3, 4, 5 и 6 млрд:
@ai_machinelearning_big_data
#AI #ML #LLM #AIFlow #TeleAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤61👍29🔥11😨5🥰3⚡2🙉1