227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Shape of Motion: Построение динамических 3D-сцен по видео.

Shape of Motion представляет динамическую сцену как набор 3D-гауссианов, перемещающихся и вращающихся во времени.

Движение каждого элемента сцены параметризуется как линейная комбинация компактного набора базисных движений SE(3), что дает возможность разделить сцену на группы, движущиеся как жесткие тела.
Преодоление неоднозначности реконструкции достигается с помощью низкоразмерных структур 3D-движения через базисы SE(3) и комплексный набор априорных данных, на основе монокулярных карты глубины и долгосрочных 2D-треков.

Процесс финального построения 3D-сцены основан на комбинации статических и динамических гауссианов, с учетом прогноза реконструкции для цвета, глубины и масок и синтезированной согласованности этих соответствий во времени.

На тренировочном наборе данных (Iphone dataset, набор видео размером ~ 300GB) были построены более 40 тысяч динамических и более 100 тысяч статических гауссианов, 20 базисов SE(3).
Время обучения на 1хGPU A100 с использованием оптимизатора Adam разрешением 960x720 составило чуть более 2-х часов при скорости рендеринга 40 кадров в секунду.

По результатам тестов в процессе обучения, Shape of Motion показал хорошие результаты по качеству и консистентности построения сцен.
Однако, метод все еще требует оптимизации для каждой конкретной сцены и не может обрабатывать значительные изменения ракурса камеры. Также установлена критическая зависимость от точных параметров камеры и пользовательского ввода для создания маски движущихся объектов.

▶️Локальный запуск Shape of Motion:


# Install via conda

conda create -n som python=3.10
conda activate som

# pip install

pip install -r requirements.txt
pip install git+https://github.com/nerfstudio-project/gsplat.git

python run_training.py --work-dir <OUTPUT_DIR> --data:<DATA> --data.seq-name <DATASEQ_NAME>


👉Препроцессинговая обработка (построение карт глубины, маскирование объектов, 2D трекинг и оценка камеры) выполняется сторонними библиотеками. Внимательно ознакомьтесь с документацией

👉Лицензирование: MIT


Страница проекта
Arxiv
Датасет на GDrive
Github [ Stars: 365 | Issues: 2 | Forks: 18]


@ai_machinelearning_big_data

#AI #4D #ShapeOfMotion #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍286🥰3👏1
🌟 MoVieS: Синтез 4D-видов с учетом движения.

ByteDance в соавторстве с Пекинским университетом и Карнеги Меллон разработали MoVieS, feed-forward модель, которая из обычного монокулярного видео за секунду синтезирует полноценную 4D-сцену, объединяя в себе геометрию, внешний вид и, что самое важное, движение.

В основе метода лежит идея представления динамической сцены с помощью «динамических сплэттер-пикселей». Если вы знакомы с 3D Gaussian Splatting, то поймете сразу: модель представляет каждый пиксель входного видео как гауссов примитив в 3D-пространстве.

Новизна MoVieS в том, что она не просто определяет их статичные параметры (положение, цвет, прозрачность), но и предсказывает вектор их движения во времени. Иными словами, для каждой частицы в сцене модель знает, где она будет в любой заданный момент.

Архитектурно MoVieS построена на геометрически предобученном трансформере VGGT, который обрабатывает кадры видео. Далее в дело вступают три специализированные «головы»:

🟠Depth Head - предсказывает карту глубины;

🟠Splatter Head - отвечает за атрибуты самих гауссовых сплэттеров для рендеринга;

🟢Motion Head - самая главная, оценивает смещение каждого примитива.

Такой единый фреймворк позволяет обучать модель на самых разнородных датасетах: где-то есть разметка глубины, где-то - трекинг точек, а где-то - только видео.

MoVieS - это еще про скорость. Согласно техотчету, на генерацию сцены уходит меньше секунды (0.93 с), тогда как у альтернативных методов на это уходят десятки минут.

При этом качество на бенчмарках динамических сцен (DyCheck и NVIDIA) либо на уровне, либо превосходит SOTA решения.

Но самое интересное - это zero-shot возможности. Модель, обученная по сути на задаче синтеза новых ракурсов, внезапно оказывается способна без всякого дополнительного обучения сегментировать движущиеся объекты и оценивать scene flow (попиксельный поток в 3D). Достаточно просто посмотреть на предсказанные векторы движения.

⚠️ Кода для инференса, обучения и чекпоинтов пока нет, но обещают.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #4D #MoVieS #ByteDance
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5031🔥13🐳1