EX-4D - совместная разработка ByteDance и Pico, которая предлагает элегантное решение проблемы генерации экстремальных ракурсов камеры для видео.
Методика позволяет генерировать видео с амплитудой угла камеры от -90° до 90°, опираясь на новый тип геометрического представления, Depth Watertight Mesh (DW-Mesh).
В отличие от стандартных методов, которые строят 3D-сцену только из видимых поверхностей, DW-Mesh создает трехмерный замкнутый меш на основе данных о глубине сцены.
Он моделирует не только то, что видит камера, но и пытается логически завершить скрытые от нее области. По сути, система строит цельный геометрический каркас сцены, который сохраняет свою форму даже при взгляде с самых неожиданных углов. Это предотвращает появление разрывов и искажений, когда ранее невидимая часть объекта попадает в кадр.
При создании EX-4D использовали уникальную стратегию обучения, которая не требует многоракурсных видеосетов. Разработчики обошли эту проблему, заставив модель создавать обучающие данные для самой себя.
Используя построенный DW-Mesh, система генерирует маски, симулируя, какие части сцены были бы скрыты при других ракурсах. Этот подход с двумя компонентами, Rendering Mask и Tracking Mask, имитирует реальные условия съемки с разных точек и дает временную согласованность маскировки, обучая модель правильно «додумывать» геометрию.
Вся эта система работает на базе видеомодели
Wan2.1
(рекомендуют версию 14B 480p), но не требует ее полной перетренировки. Геометрическая информация от DW-Mesh интегрируется с помощью LoRA-адаптера, он выступает мостом между меш-каркасом и генеративной нейросетью. В тестах EX-4D обходит TrajectoryCrafter и ReCamMaster, особенно на больших углах. В пользовательских тестах 70 % участников отдали предпочтение видео, сгенерированным EX-4D, отметив физическую консистентность и высокое качество картинки.
⚠️ Локальный запуск потребует значительных ресурсов, особенно для видео высокого разрешения. Помимо Wan2.1, самой EX-4D, еще понадобятся пакеты nvdiffrast от NVlabs и DepthCrafter от Tencent.
В планах: оптимизация инференса, поддержка 1К и 2К разрешения и новые техники уточнения мешей.
@ai_machinelearning_big_data
#AI #ML #EX4D #ByteDance #Video
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤91👍54🔥35😁1
Forwarded from Анализ данных (Data analysis)
🧠 Hugging Face представили SmolLM-3B — компактную и мощную open-source LLM на 3 млрд параметров, которая работает *прямо на ноутбуке*.
📦 Особенности:
• Тренирована на 1T токенов (RefinedWeb + книги + код + академические тексты)
• Обгоняет Mistral-7B и LLaMA-3 8B на многих задачах
• Работает в GGUF, поддерживается LM Studio, Ollama, LM Deploy и др.
💡 Зачем это нужно?
SmolLM — не про SOTA, а про локальные сценарии: быстрый запуск, приватность, низкие требования к железу.
📁 Репозиторий и демо:
https://huggingface.co/blog/smollm3
@data_analysis_ml
📦 Особенности:
• Тренирована на 1T токенов (RefinedWeb + книги + код + академические тексты)
• Обгоняет Mistral-7B и LLaMA-3 8B на многих задачах
• Работает в GGUF, поддерживается LM Studio, Ollama, LM Deploy и др.
💡 Зачем это нужно?
SmolLM — не про SOTA, а про локальные сценарии: быстрый запуск, приватность, низкие требования к железу.
📁 Репозиторий и демо:
https://huggingface.co/blog/smollm3
@data_analysis_ml
❤76👍46🔥22🥱3👌1
🧠 Учёные разработали мозговой интерфейс, который переводит мысли в речь с интонацией
Свежая статья в *Nature* описывает, как человек с параличом получил голос благодаря нейроимпланту.
Устройство считывает активность мозга и синтезирует речь со скоростью 40–60 слов/мин и точностью воспроизведения более 60 %.
📍 Как это работает:
— В мозг имплантированы 256 микродатчиков в вентральную двигательную префронтальную извилину — зону, отвечающую за речь
— Нейросеть расшифровывает активность речевой зоны
— Голос синтезируется мгновенно (~25 мс задержки)
— Человек *слышит* свой голос и может менять интонацию, задавать вопросы и даже петь
💬 Важно:
Это не просто текст. Это живая речь с эмоциями, восстановленная у человека, полностью утратившего возможность говорить.
Перспективная технология для всех, кто потерял голос.
📌 Полная статья
@ai_machinelearning_big_data
#ml #ai #brain #nature
Свежая статья в *Nature* описывает, как человек с параличом получил голос благодаря нейроимпланту.
Устройство считывает активность мозга и синтезирует речь со скоростью 40–60 слов/мин и точностью воспроизведения более 60 %.
📍 Как это работает:
— В мозг имплантированы 256 микродатчиков в вентральную двигательную префронтальную извилину — зону, отвечающую за речь
— Нейросеть расшифровывает активность речевой зоны
— Голос синтезируется мгновенно (~25 мс задержки)
— Человек *слышит* свой голос и может менять интонацию, задавать вопросы и даже петь
💬 Важно:
Это не просто текст. Это живая речь с эмоциями, восстановленная у человека, полностью утратившего возможность говорить.
Перспективная технология для всех, кто потерял голос.
📌 Полная статья
@ai_machinelearning_big_data
#ml #ai #brain #nature
❤176👍65🔥43😨9😁5⚡2🤔2🤨2
Media is too big
VIEW IN TELEGRAM
Ведущие ИИ-компании в партнерстве с Американской федерацией учителей создают Национальную академию по обучению искусственному интеллекту. В рамках инициативы стоимостью 22.5 миллиона долларов преподавателям от детского сада до старших классов предоставят бесплатные программы для интеграции ИИ в учебный процесс.
Проект стал ответом на стихийное распространение чат-ботов в школах, которое вызвало у педагогов опасения по поводу списывания и снижения качества обучения. Вместо запретов, технологические гиганты предлагают обучать учителей ответственному использованию новых инструментов, попутно формируя лояльность к своим продуктам у будущих пользователей.
wired.com
All-TNN - нейросеть, структура которой имитирует организацию нейронов в человеческом мозге. В отличие от традиционных CNN, которые отлично распознают текстуры, но плохо справляются с формами, All-TNN демонстрирует смещения, характерные для людей. Например, она «ожидает» увидеть самолет в верхней части изображения, а не в нижней.
Ключевое отличие - отказ от weight sharing, неестественного для биологических систем. Вместо этого каждый нейрон обучается индивидуально, но со сглаживающим ограничением, которое заставляет соседние нейроны учиться схожим признакам.
Несмотря на то, что All-TNN пока уступает CNN в точности классификации, она потребляет в 10 раз меньше энергии при 13х большем размере.
spectrum.ieee.org
По соглашению, Replit станет доступен в магазине Azure и будет интегрирован с облачными сервисами Microsoft, включая контейнеры, виртуальные машины и базу данных Neon Serverless Postgres. Компании позиционируют совместное предложение как инструмент для быстрого прототипирования, ориентированный не только на программистов, но и на бизнес-пользователей без опыта в кодинге.
Это событие примечательно, поскольку Replit традиционно считалась одним из ключевых клиентов и партнеров Google Cloud, где размещались созданные на платформе приложения. Replit подтвердил, что компания не уходит от Google, а расширяет поддержку на экосистему Microsoft, становясь мультиоблачным решением. Для Microsoft это партнерство - способ привлечь на свою платформу разработчиков и проекты, ранее ориентированные на конкурента.
prnewswire.com
Moonvalley, основанная выходцами из DeepMind, открыла публичный доступ к своей модели для генерации видео Marey, которая была обучена исключительно на открыто лицензированных данных. Решение позиционируется как инструмент для «гибридного кинопроизводства», предлагая кинопродакшену значительно больше контроля, чем стандартные text-to-video модели.
Модель отличается «осведомленностью о 3D-пространстве» и возможностью свободного управления виртуальной камерой. Пользователи могут в реальном времени изменять траекторию, панорамировать и масштабировать изображение простым движением мыши. Marey также позволяет контролировать объекты, персонажей и менять фон в исходном видео.
Доступ к Marey, способной генерировать ролики до 5 секунд, предоставляется по платной подписке - $14,99 за 100 кредитов, $34,99 за 250 кредитов и $149,99 за 1000 кредитов.
techcrunch.com
Техгигант приобрел миноритарную долю в EssilorLuxottica, крупнейшем в мире производителе очков и владельце бренда Ray-Ban. Сумма сделки составила 3,5 млрд. долларов за пакет акций размером менее 3%. Сделка значительно углубляет партнерство двух компаний, которые уже совместно выпускают умные очки Ray-Ban.
Для Марка Цукерберга это стратегический шаг в рамках его масштабного плана по развитию ИИ и созданию собственных аппаратных платформ. Умные очки рассматриваются как ключевое устройство будущего, которое избавит от привязки к смартфонам конкурентов, Apple и Google.
bloomberg.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93❤44🔥25🥰5👌2🥱2
VGGT: Visual Geometry Grounded Transformer
Долгие годы создание трехмерных моделей из набора фотографий было уделом сложных и медленных алгоритмов вроде Structure-from-Motion. Этот процесс напоминает многоэтапный конвейер: найти ключевые точки, сопоставить их между кадрами, триангулировать, а затем долго и мучительно оптимизировать геометрию всей сцены.
Инженеры из компании Марка Цукерберга и Оксфордского университета решили, что пришло время отдать всю эту работу одной нейросети. И, кажется, у них получилось.
Их разработка, VGGT (Visual Geometry Grounded Transformer), и это, по сути, первая настоящая фундаментальная модель для 3D-реконструкции.
Она не просто ускоряет старые процессы, а полностью меняет парадигму, превращая сложный многоступенчатый пайплайн в вызов одной функции. Вы просто скармливаете ему от одной до сотен фотографий, а модель за несколько секунд выдает полный набор 3D-атрибутов: точные параметры каждой камеры, карты глубины, плотное облако точек и даже траектории движения точек по всей последовательности изображений.
И все это за один проход, без какой-либо итеративной оптимизации.
Под капотом у VGGT - трансформер на 1.2 миллиарда параметров с механизмом попеременного внимания. Модель то «всматривается» в детали каждого отдельного кадра, то «окидывает взглядом» всю сцену целиком, анализируя связи между разными ракурсами. Это позволяет ей одновременно понимать и локальный контекст, и глобальную геометрию.
Даже в «сыром» виде, без постобработки, VGGT опережает DUSt3R и MASt3R: 0.2 секунды против почти 10 секунд. Но самое интересное начинается, когда на выходные данные VGGT «накладывают» быструю классическую оптимизацию Bundle Adjustment. Этот гибридный подход бьет все рекорды, устанавливая новый стандарт качества в задачах оценки поз камер и реконструкции.
⚠️ На одной H100 с Flash Attention 3 обработка 1 входного изображения занимает 0.04 сек при потреблении VRAM 1.88 ГБ, 10 изображений - 0.14 сек и 3.63 ГБ, 50-ти - всего 1.04 сек при 11.41 Гб, а 200 изображений - 8.57 сек с 40.63 Гб.
📌 Лицензирование: CC-BY-NC-4.0 License.
🟡 Страница проекта
🟡 Модель
🟡 Arxiv
🟡 Demo
🖥 GitHub
@ai_machinelearning_big_data
#AI #ML #Transformer #3DRecon #VGGT
Долгие годы создание трехмерных моделей из набора фотографий было уделом сложных и медленных алгоритмов вроде Structure-from-Motion. Этот процесс напоминает многоэтапный конвейер: найти ключевые точки, сопоставить их между кадрами, триангулировать, а затем долго и мучительно оптимизировать геометрию всей сцены.
Инженеры из компании Марка Цукерберга и Оксфордского университета решили, что пришло время отдать всю эту работу одной нейросети. И, кажется, у них получилось.
Их разработка, VGGT (Visual Geometry Grounded Transformer), и это, по сути, первая настоящая фундаментальная модель для 3D-реконструкции.
Она не просто ускоряет старые процессы, а полностью меняет парадигму, превращая сложный многоступенчатый пайплайн в вызов одной функции. Вы просто скармливаете ему от одной до сотен фотографий, а модель за несколько секунд выдает полный набор 3D-атрибутов: точные параметры каждой камеры, карты глубины, плотное облако точек и даже траектории движения точек по всей последовательности изображений.
И все это за один проход, без какой-либо итеративной оптимизации.
Под капотом у VGGT - трансформер на 1.2 миллиарда параметров с механизмом попеременного внимания. Модель то «всматривается» в детали каждого отдельного кадра, то «окидывает взглядом» всю сцену целиком, анализируя связи между разными ракурсами. Это позволяет ей одновременно понимать и локальный контекст, и глобальную геометрию.
Даже в «сыром» виде, без постобработки, VGGT опережает DUSt3R и MASt3R: 0.2 секунды против почти 10 секунд. Но самое интересное начинается, когда на выходные данные VGGT «накладывают» быструю классическую оптимизацию Bundle Adjustment. Этот гибридный подход бьет все рекорды, устанавливая новый стандарт качества в задачах оценки поз камер и реконструкции.
⚠️ На одной H100 с Flash Attention 3 обработка 1 входного изображения занимает 0.04 сек при потреблении VRAM 1.88 ГБ, 10 изображений - 0.14 сек и 3.63 ГБ, 50-ти - всего 1.04 сек при 11.41 Гб, а 200 изображений - 8.57 сек с 40.63 Гб.
@ai_machinelearning_big_data
#AI #ML #Transformer #3DRecon #VGGT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥87❤40👍33👌4🌚3🤬1
Reachy Mini — это выразительный и полностью open-source робот, созданный для взаимодействия с человеком, коммуникации и экспериментов с ИИ.
- Все ПО открыто и написано на Python, а скоро будет достнуо — и на JavaScript и Scratch
- Базовая версия стоит $299, еще доступна wireless-версия за $449
- Открытая архитектура и SDK — идеален для экспериментов с LLM, аудио- и визуальными агентами
С ним можно разрабатывать, тестировать, запускать и делиться реальными ИИ-приложениями — на базе современных LLM-моделей.
Технические характеристики
- Высота: 28 см, в режиме сна — 23 см
- Ширина: 16 см, вес: 1.5 кг
- Поставляется в виде конструктора:
- Lite-версия — базовый функционал
- Полноценная версия — автономная версия с Raspberry 5 внутри, встроенным питанием, Wi‑Fi, микрофонами и камерой
🎤 Датчики и интерфейсы
- Микрофоны: Lite — 2, Wireless — 4 встроенных микрофонов
hyper.ai
- Камера: широкоугольная фронтальная камера (в wireless-версии)
- Акселерометр: встроен в Wireless-версию
🔗 Подробнее: https://hf.co/blog/reachy-mini
@ai_machinelearning_big_data
#huggingface #Reachy #opensource #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤74🔥52👍33🤔8👏4🙈3😁2
NXTscape - опенсорсный браузер для Mac OS на базе Chromium, где ИИ-агенты работают у вас на устройстве, а не в облаке ИТ-гигантов.
Самое важное: ключи API, история и данные никогда не покидают локальную систему. Подключаете OpenAI, Anthropic или локальные модели через Ollama и автоматизируете рутину действий в интернете.
Проект прост в переходе с Chrome: миграция занимает пару кликов, все расширения работают, его код открыт, можно форкнуть или проверить каждую строчку.
В планах на будущее: MCP Store, магазин ИИ-агентов, в нем обещают запуск прямо из адресной строки. Плюс встроенный ИИ-блокировщик рекламы, который планируют сделать умнее аналогов.
Теперь ваши 70+ вкладок могут управляться агентами, а не вы ими, достаточно скачать стабильный релиз с Github.
@ai_machinelearning_big_data
#AI #ML #Agents #Github #NXTscape
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍89❤37🔥23🤔9🥰4😘1
🚨 Grok 4 — новая мощная модель от xAI
📊 Лидер на бенчмарках:
- Решает математику AIME25 на 100% — не ошиблась ни в одной из самых сложных задач
- ARC-AGI-2: 15.9% против 8.6% у прошлых лидеров — почти в два раза выше, чем у Claude 4 Opus.
🧠 Главное достижение — Humanity’s Last Exam:
- С максимальными ресурсами и включённой поддержкой внешних инструментов — 44.4% (а на текстовой части даже 50.7%).
- Даже без внешних инструментов — всё ещё лучше всех: 25.4%, у ближайшего конкурента (Gemini 2.5 Pro) — 21.6%.
- Почти половина презентации была посвящена именно этому тесту.
🛠 Что под капотом:
- Архитектура — та же, что у Grok 3.
- Изначально это должна была быть версия Grok 3.5, но решили увеличить объём обучения.
- На стадию логического обучения (reasoning) потратили в 10 раз больше ресурсов.
- Теперь объём дообучения через RL (reinforcement learning) сопоставим с основным обучением.
- Важно: теперь модель сразу обучают использовать внешние инструменты во время RL, как это делают в OpenAI (в o3 и o4-mini).
📉 Слабые места:
- Мультимодальность пока на слабом уровне: большинство тестов — чисто текстовые, и на HLE модель показывает просадку.
- Маск пообещал, что в следующей версии это исправят.
📏 Контекст увеличили до 256k токенов.
💬 API уже запущен:
- Стоимость — как у Grok 3 и Claude Sonnet.
- Но из-за "разговорчивости" на практике модель по цене ближе к Claude Opus.
- Grok 4 Mini не выпустили — жаль, ведь Grok 3 Mini была отличной за свою цену.
🏭 Инфраструктура xAI растёт стремительно:
- Через 3–4 недели стартует тренировка видеомодели на 100k+ GPU GB200.
- В июне компания привлекла $10 млрд: половина — инвестиции, половина — в долг.
- В планах — новое расширение дата-центра Colossus.
📌 Grok 4 — это не просто обновление, а важный шаг вперёд в развитии reasoning-моделей и интеграции с внешними возможностями.
Тестим здесь.
@ai_machinelearning_big_data
#grok
📊 Лидер на бенчмарках:
- Решает математику AIME25 на 100% — не ошиблась ни в одной из самых сложных задач
- ARC-AGI-2: 15.9% против 8.6% у прошлых лидеров — почти в два раза выше, чем у Claude 4 Opus.
🧠 Главное достижение — Humanity’s Last Exam:
- С максимальными ресурсами и включённой поддержкой внешних инструментов — 44.4% (а на текстовой части даже 50.7%).
- Даже без внешних инструментов — всё ещё лучше всех: 25.4%, у ближайшего конкурента (Gemini 2.5 Pro) — 21.6%.
- Почти половина презентации была посвящена именно этому тесту.
🛠 Что под капотом:
- Архитектура — та же, что у Grok 3.
- Изначально это должна была быть версия Grok 3.5, но решили увеличить объём обучения.
- На стадию логического обучения (reasoning) потратили в 10 раз больше ресурсов.
- Теперь объём дообучения через RL (reinforcement learning) сопоставим с основным обучением.
- Важно: теперь модель сразу обучают использовать внешние инструменты во время RL, как это делают в OpenAI (в o3 и o4-mini).
📉 Слабые места:
- Мультимодальность пока на слабом уровне: большинство тестов — чисто текстовые, и на HLE модель показывает просадку.
- Маск пообещал, что в следующей версии это исправят.
📏 Контекст увеличили до 256k токенов.
💬 API уже запущен:
- Стоимость — как у Grok 3 и Claude Sonnet.
- Но из-за "разговорчивости" на практике модель по цене ближе к Claude Opus.
- Grok 4 Mini не выпустили — жаль, ведь Grok 3 Mini была отличной за свою цену.
🏭 Инфраструктура xAI растёт стремительно:
- Через 3–4 недели стартует тренировка видеомодели на 100k+ GPU GB200.
- В июне компания привлекла $10 млрд: половина — инвестиции, половина — в долг.
- В планах — новое расширение дата-центра Colossus.
📌 Grok 4 — это не просто обновление, а важный шаг вперёд в развитии reasoning-моделей и интеграции с внешними возможностями.
Тестим здесь.
@ai_machinelearning_big_data
#grok
❤93👍59🔥20😁4🤣4🫡2👏1
Media is too big
VIEW IN TELEGRAM
Власти КНДР объявили о реформе системы образования, в рамках которой в ведущих университетах страны создаются новые специальности, связанные с искусственным интеллектом. Согласно официальной партийной газете «Нодон синмун», это нужно для подготовки талантов, необходимых для «требований времени».
Этот шаг подтверждает давний интерес страны к передовым технологиям. Исследовательский институт ИИ при Университете имени Ким Ир Сена уже заявил о цели «использовать технологию GPT для замены умственного труда человека». Ранее сообщалось об использовании в институте американского ChatGPT, а научные издания страны посвящали спецвыпуски этой технологии. Аналитики полагают, что Пхеньян намерен применять ИИ не только для технологического развития, но и для укрепления государственного контроля и в разведывательной деятельности.
Lianhe Zaobao
OpenAI готовится в течение нескольких недель запустить собственный веб-браузер с глубокой интеграцией искусственного интеллекта. Новый продукт будет построен на Chromium, но предложит уникальные функции: встроенное окно для общения в стиле ChatGPT и поддержку ИИ-агентов. Эти агенты смогут автономно выполнять задачи пользователей, от бронирования отелей до заполнения онлайн-форм.
Ключевая идея состоит в удержании пользователя внутри интерфейса браузера, а не перенаправлять на внешние сайты. как это происходит сейчаc в ChatGPT. Если OpenAI удастся привлечь хотя бы часть из 500 миллионов еженедельных пользователей ChatGPT, это может серьезно пошатнуть рекламную бизнес-модель Google, которая во многом опирается на данные, собираемые через Chrome.
reuters.com
Модель генерации изображений в стиле аниме основана на Stable Diffusion 1.5, генерирует в разрешении до 1024x1024 пикселей и использует предпоследний слой энкодера CLIP.
Diffusion Anime V2 распространяется под двойной лицензией, которая допускает только некоммерческое использование с обязательным указанием авторства. NovelAI напоминает, что V2 является устаревшей версией, а все новые модели остаются проприетарными и эксклюзивными для их веб-сервиса. Веса Diffusion Anime V2 доступны на Hugging Face.
blog.novelai.net
С 15 июля YouTube вводит более строгие правила для своей партнерской программы, нацеленные на борьбу с массово создаваемыми и повторяющимися видео. Это ответ сервиса на рост генеративных ИИ-инструментов, которые значительно упрощают производство подобного контента.
Хотя представители платформы называют это «незначительным обновлением» и утверждают, что такой контент и раньше не подлежал монетизации, новые правила вносят больше ясности. Ужесточение рассматривается как превентивная мера для защиты YouTube от наплыва низкокачественных видео, способных нанести ущерб репутации и ценности платформы.
techcrunch.com
Google начала развертывание своего ИИ-ассистента Gemini на умных часах, заменяя Google Assistant на носимых устройствах. Обновление уже доступно для Pixel Watch и в ближайшие недели появится на моделях от Samsung, OPPO, OnePlus, Xiaomi и других производителей под управлением Wear OS 4 или новее.
Новый ассистент на часах поддерживает текстовые, голосовые и графические запросы. Активировать Gemini можно привычной командой «Hey Google» или долгим нажатием боковой кнопки. Благодаря глубокой интеграции с сервисами Google, пользователи смогут выполнять многошаговые команды прямо с запястья: просить создать плейлист в YouTube Music или кратко изложить содержание последних писем в Gmail.
Вместе с этим, компания улучшила функцию визуального поиска Circle to Search, добавив в нее специальный "AI Mode" для получения контекстной информации. Улучшение доступно пока только для США и Индии на Android и iOS.
9to5google.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥69🤣33❤29👍23😁6🙉6🗿3🥰2