271K subscribers
3.94K photos
674 videos
17 files
4.53K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ Google столкнулась с антимонопольной жалобой в ЕС из-за функции AI Overviews.

Коалиция независимых издателей подала антимонопольную жалобу на Google в Еврокомиссию. Они утверждают, что новая функция AI Overviews отбирает у них трафик и рекламные доходы, используя их контент без разрешения и компенсации.

Основная претензия заключается в том, что издатели не могут запретить использование своих материалов для обучения нейросетей и создания саммари, не рискуя при этом полностью исчезнуть из результатов поиска. Google же заявляет, что AI Overviews лишь помогает пользователям находить контент.
reuters.com

✔️ Индийский инженер-программист совмещал работу сразу в нескольких стартапах.

Сохам Парекх оказался в центре скандала, когда выяснилось, что он тайно занимал фултайм-позиции сразу в нескольких стартапах. Все началось с поста основателя Playground AI, который рассказал, что Парех умудрялся работать на 3-4 компании сразу. К обсуждению быстро подключились другие компании, подтвердившие, что тоже собеседовали или нанимали его.

Схема была проста: Парех впечатлял на технических интервью и имел активный профиль на GitHub, это и помогало ему получать офферы. Но после найма он срывал сроки и не выполнял задачи. Поймали его, заметив коммиты в репозитории другой компании во время его предполагаемого «больничного». Сам инженер объяснил свои действия тяжелым финансовым положением.

Сейчас Парекх работает в стартапе Darwin Studios, стартапе по ремикшированию видео с использованием ИИ.
theverge.com

✔️ ИИ помог создать нейтрализатор радиоактивного йода.

Команда исследователей из Кореи использовала машинное обучение для решения проблемы утилизации ядерных отходов. Их целью был радиоактивный I-129, изотоп с периодом полураспада 15,7 млн лет, крайне опасный для живых организмов.

С помощью ИИ ученые нашли новый адсорбент на основе меди, хрома, железа и алюминия, который удаляет более 90% радиоактивного йода из воды. Это значительно эффективнее существующих методов.

Главное преимущество ИИ было в скорости. Вместо полного перебора комбинаций модель предсказывала самые перспективные составы, что позволило протестировать лишь 16% от всех возможных вариантов для нахождения оптимального. Команда уже патентует технологию для коммерческого применения.
phys.org

✔️ Команда ZLUDA отчиталась о прогрессе в запуске CUDA на сторонних GPU.

Проект ZLUDA, позволяющий запускать код CUDA на видеокартах AMD и Intel, поделились важными обновлениями после спасения от закрытия. Проект теперь ведут два фултайм-разработчика, один из которых сфокусирован на поддержке ИИ-нагрузок.

Главный фокус - запуск GPT-2 в рамках тестового проекта llm.c. Это необходимый шаг к поддержке фреймворков наподобие PyTorch. Также разработчики повышают точность вычислений, стремясь к побитовому соответствию с результатами на железе Nvidia с помощью PTX-тестов.
vosen.github.io

✔️ Skywork-Reward-V2: обновление семейства открытых reward-моделей.

Китайская компания Kunlun Wanwei выпустила вторую версию своих открытых reward-моделей, которые помогают «объяснить» LLM, какие ответы считать хорошими, а какие — плохими.

Новая серия V2 обучена на огромном датасете из 26 миллионов пар оценок и включает 8 моделей разного размера. По заявлениям разработчиков, флагманская версия на 8 млрд. параметров превосходит все существующие аналоги на ключевых бенчмарках, а самая компактная, 600 по производительности почти догнала их старшую модель прошлого поколения на 27 млрд. параметров. Новое семейство уже доступно на HuggingFace.
github.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
55👍27🔥13😁2🥰1🫡1
📌SemDiD: Семантическое разнообразие ответов для LLM.

Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.

Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.

Стандартные подходы к декодированию, temperature sampling или diverse beam search, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.

Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.

🟡Метод работает так.

Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.

По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм - inter-group repulsion. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.

Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?

SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.

Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.

Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.

🟡В тестах метод показал неплохие результаты.

На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.

🟡Но главный прорыв - в RLHF.

Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.


🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
62👍31🔥23
This media is not supported in your browser
VIEW IN TELEGRAM
📓🦙 NotebookLlama —Практически полный функционал NotebookLM — в опенсорсе.

Особенности:
✔️ Создаёт базу знаний из документов — с точным разбором через LlamaCloud
✔️ Автоматически пишет резюме и строит mind map-графы
✔️ Позволяет генерировать подкасты (работает на базе ElevenLabs)
✔️ Позволяет вести чат с агентом по документам
✔️ Метрики и аналитика через opentelemetry

🛠 Всё в открытом репо — можешь форкать, кастомизировать, заменять компоненты под себя.

Установка:


git clone https://github.com/run-llama/notebookllama


GitHub: https://github.com/run-llama/notebookllama
Попробовать в LlamaCloud: https://cloud.llamaindex.ai

@ai_machinelearning_big_data


#AI #ML #LLM #opensource #NotebookLM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9937👍17🥰1
📌 США могут ускорить гонку ИИ, вложив в "Манхэттенский проект ИИ" ресурсы, сопоставимые с программой «Аполлон».

Идея «Манхэттенского проекта для ИИ», витавшая последние месяцы на самом высоком уровне в США, кажется, начинает обретать очертания. Но за громкими сравнениями обычно теряется суть: а что это значит на практике?

Аналитики из Epoch AI решили посчитать, какой вычислительный монстр может появиться, если американское правительство консолидирует ресурсы частного сектора и вложит в проект долю ВВП, сопоставимую с пиком лунной программы.

Epoch AI - некоммерческий исследовательский институт, который изучает траекторию развития искусственного интеллекта, анализирует тренды в вычислениях, данных и алгоритмах, чтобы прогнозировать влияние ИИ на экономику и общество.


🟡Картина получается масштабная.

Расчеты показывают, что к концу 2027 года такой проект мог бы обеспечить тренировочный прогон модели с вычислительной мощностью порядка 2 × 10²⁹ FLOP.

Чтобы понять масштаб: это примерно в 10 000 раз больше, чем потребовалось для обучения GPT-4. По сути, это рывок, который по текущим прогнозам должен был случиться на несколько лет позже.

Финансирование на уровне программы «Аполлон» (около 0.8% ВВП или 244 млрд. долларов сегодня) позволило бы закупить и объединить в один кластер эквивалент 27 миллионов NVIDIA H100. Эта цифра, кстати, совпадает с экстраполяцией текущих доходов NVIDIA от продаж в США.

🟡А хватит ли на это электричества?

27 миллионов GPU потребуют около 7.4 ГВт мощности - это больше, чем потребляет весь город Нью-Йорк. Оказывается, это не главная преграда. Аналитики говорят, что к 2027 году в США и так планируется ввод 8.8 ГВт за счет новых газовых электростанций, значительная часть которых уже предназначена для дата-центров.

При наличии политической воли и используя законодательные инструменты, правительство США сможет сконцентрировать эти мощности в одном месте, так что энергия не станет узким местом.

🟡Разумеется, у сценария есть свои «но».

Геополитическая напряженность, например, вокруг Тайваня, может сорвать поставки чипов. Кроме того, нельзя просто так взять и увеличить масштаб в тысячи раз. Масштабирование требует времени на отладочные прогоны и эксперименты, но это скорее инженерное, а не ресурсное ограничение.

Тем не менее, анализ показывает: при должной координации и инвестициях технологический скачок в области ИИ может произойти гораздо быстрее, чем мы думаем. И это уже вполне просчитываемая возможность.

🔜 Статья на Epoch AI

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
86👍58🔥26🤔15🤣8🥱5😭3
🧠 MCP сервер для баз данных от Google

Он выступает прослойкой между вашим агентом (например, LangChain, LlamaIndex, VertexAI) и базой данных, упрощая работу с базой, подключение, управление, безопасность и мониторинг.,

Подходит для разработки AI-агентов, которые могут создавать и управлять в реальными БД.

Особенности:
✔️ Подключение к БД за < 10 строк Python
✔️ Встроенный pooling и аутентификация
✔️ Простая интеграция в агентов (LangChain, Autogen, и т.д.)
✔️100% open-source
✔️Поддержка разных БД: PostgreSQL, MySQL, SQLite, SQL Server, AlloyDB, Cloud SQL, Spanner, BigQuery, Bigtable, Couchbase, Dgraph, Redis, Neo4j и др.
✔️Удобная конфигурация : простой синтаксис YAML для описания функций и запросов.


Если делаете агентов, которые работают с SQL/PostgreSQL/MySQL — точно стоит попробовать.

GitHub: https://github.com/googleapis/genai-toolbox

@ai_machinelearning_big_data


#AI #ML #aiagent #opensource #MCP #databases #genai
Please open Telegram to view this post
VIEW IN TELEGRAM
56👍23🔥163🥰1🍓1
Media is too big
VIEW IN TELEGRAM
✔️ Groq открывает первый европейский дата-центр.

Первый дата-центр Groq в ЕС разместится в Хельсинки, Финляндия, в сотрудничестве с местным провайдером Equinix. Этот шаг направлен на удовлетворение растущего спроса со стороны европейских клиентов, которым необходимы минимальная задержка и высокая скорость обработки запросов. Размещение инфраструктуры в Финляндии также решает вопросы суверенитета данных европейских пользователей.

Европейский хаб станет частью глобальной сети компании, которая уже включает мощности в США, Канаде и Саудовской Аравии. Выбор Финляндии обусловлен ее надежной энергосистемой и возможностями для эффективного охлаждения оборудования.
groq.com

✔️ БРИКС предложил принципы глобального регулирования ИИ.

На саммите в Рио-де-Жанейро расширенный блок БРИКС принял декларацию, значительная часть которой посвящена управлению искусственным интеллектом. В документе содержится инициатива к созданию глобальной системы регулирования под эгидой ООН, чтобы преимущества технологии были доступны всем странам, включая Глобальный Юг.

Ключевые принципы, предложенные блоком: защита от несанкционированного использования ИИ, ограничение на избыточный сбор данных и разработка механизмов справедливой компенсации для правообладателей. Декларация также подтверждает суверенное право каждой страны устанавливать собственные правила, но рекомендует создание совместимых международных стандартов.
reuters.com

✔️ NVIDIA построит в Израиле технологический кампус.

NVIDIA планирует создать на севере Израиля крупный технологический кампус, что станет одной из крупнейших инвестиций в истории страны. Для проработки деталей проекта уже выпущен официальный запрос информации (RFI).

Цель «мегакампуса» - значительно расширить операции NVIDIA и ускорить инновации в области ИИ. На данный момент в израильском центре исследований и разработок NVIDIA, который является крупнейшим за пределами США, уже работает около 5000 сотрудников.
timesofisrael.com

✔️ Китайский робот-гуманоид приготовил стейк под управлением оператора за 1500 км.

Shenzhen Dobot продемонстрировала возможности телеуправления своим роботом Dobot Atom. Находясь в провинции Шаньдун, робот успешно приготовил стейк, в то время как оператор управлял им из провинции Гуандун, с расстояния 1500 километров.

Управление осуществлялось в реальном времени с помощью VR-гарнитуры, которая отслеживала и передавала движения рук инженера. В ходе демонстрации робот выполнил несколько сложных задач с точностью движений до 0.05 мм.

Dobot уже начала глобальные поставки Atom, став одним из немногих китайских разработчиков гуманоидов, вышедших на стадию серийного производства.
scmp.com

✔️ ByteDance выложила в открытый доступ агента-программиста Trae.

Trae Agent превращает текстовые запросы в рабочий код. Этот экспериментальный проект использует Claude и Gemini, чтобы писать, отлаживать и исправлять ошибки в коде без участия человека. Он работает через командную строку, анализирует большие проекты, применяет bash-скрипты и обновляет файлы в реальном времени.

Система уже показала высокие результаты на тесте SWE-bench Verified. Trae открыт под MIT-лицензией, а его команда планирует расширить поддержку LLM, добавить MCP и усилить Unit-тестирование.
github.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4022🔥14😴3🤩2
🔥 MWS Data Scout — первый в России AI-агент для автоматического описания данных

Компания МТС Web Services (MWS) запустила AI-агента нового поколения, который самостоятельно анализирует корпоративные базы данных, описывает, что в них хранится, и как всё связано.

🟡 Что делает MWS Data Scout — это часть платформы MWS Data. Агент парсит базы данных, анализирует метаинформацию, подключается к Confluence и дата-каталогам (DataHub, OpenMetadata и др.), после чего формирует структированное описание таблиц, столбцов и связей между ними. Всё это — в десятки раз быстрее ручного аудита.

🟡 Ключевые функции — Понимает, как рассчитывается «Выручка» или «Сумма сделки» — Отмечает валюту, округления, методики расчёта — Показывает, до или после налогообложения данные — Находит критичные персональные данные (ПДн, паспорт, CVV, банковская информация) — Отслеживает семантику: объясняет смысл даже тех данных, где подписей нет

🟡 Работа в облаке и в защищённом контуре Подключается как из облака, так и из локальных IT-сред, с соблюдением требований к безопасности и хранению чувствительной информации.

🟡 Что дальше В будущем агент будет: — строить пайплайны данных от источника до BI/ML-систем, — запускать автоматические проверки качества, — искать аномалии и подозрительные отклонения в потоках данных.

MWS Data Scout уже сейчас автоматизирует рынок, который оценивается в 3,5 млрд рублей. Потенциальная экономия - от 50 млн рублей на проект.

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
44🤣23👍19🔥6🥱3🗿2
🌟 HumanOmniV2: модель, которая понимает контекст видео.

Alibaba Group разработали HumanOmniV2, модель на базе Qwen2.5-Omni-7B-thinker, которая получила навык осмысления визуального контекста за счет изменения самого процесса мышления модели. Ее научили следовать строгому формату: сначала описать контекст, потом рассуждать и только затем давать ответ.

Теперь, прежде чем отвечать на вопрос, модель генерирует подробное описание сцены в теге <context>. На этом этапе она фиксирует, кто что делает, какой фон, какие звуки слышны. Только после этого в теге <think> она строит логическую цепочку рассуждений, связывая вопрос с собранным контекстом. И лишь в конце выдает результат в теге <answer> .

Чтобы этот подход работал, его усилили системой вознаграждений на основе RL. За точность и правильный формат модель получает стандартные награды, но были введены и две новых:

🟢«Награда за контекст» дается, если его описание полное и релевантное, причем качество этого описания оценивает другая, более мощная LLM;

🟢«Логическая награда» проверяет, что в своих рассуждениях модель действительно использовала данные из видео и аудио, а не проигнорировала их.

Для оценки HumanOmniV2 создали бенчмарк IntentBench (633 видео, 2689 вопросов) на основе Social-IQ 2.0, EMER и MDPE.

Его фишка в том, что вопросы требуют одновременного анализа: видеоряда (жесты, микровыражения), диалогов (тон, смысл реплик) и социального контекста (ирония, обман, скрытые намерения).

Тестовая модель обошла открытые аналоги на 3 бенчмарках:

🟠Daily-Omni: 58.47% (53.13% у MiniCPM-o 2.6);
🟠WorldSense: 47.1% (45.4% у Qwen2.5-Omni);
🟠IntentBench: 69.33% (64.20% у Qwen2.5-Omni).


📌Лицензирование: Apache 2.0 License.


🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #HumanOmniV2 #Alibaba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4933🔥15🥱5🗿1
🧠 ИИ умеет мыслить стратегически?

Новое исследование Oxford и King’s College London поставило перед ИИ-моделями сложную задачу: сыграть тысячи раундов эволюционной версии "Дилеммы заключённого", где важно не просто ответить правильно, а выстроить стратегию в долгую.

В эксперименте участвовали флагманские модели от OpenAI, Google и Anthropic. Вот как они себя проявили:

🔹 Google Gemini — хладнокровный и расчётливый
Не доверяет, первым атакует, наказывает за предательство. Стратег чистой воды.

🔹 OpenAI GPT — слишком добрый
Склонен к сотрудничеству даже тогда, когда это невыгодно. Хорош в мире, уязвим в конфликте.

🔹 Anthropic Claude — гибкий и адаптивный
Умеет прощать, но делает выводы на основе опыта коммуникации. Меняет поведение со временем и часто приходит к победе.

Исследователи проанализировали 32,000 решений, и выяснили:
эти модели не просто "угадывают" слова — они делают выводы, оценивают риск, строят гипотезы о поведении противника и последовательно придерживаются своей стратегии.

Общее в поведении:
1. Модели справляются с новыми, непредсказуемыми оппонентами
2. Демонстрируют разные стратегии, несмотря на общий обучающий набор данных
3. Объясняют свои действия — в некоторых случаях с вероятностным анализом, ссылаясь на поведение соперников

Еще большинство моделей выбирает кооперацию — особенно против предсказуемых и простых стратегий соперника.

Каждая модель показала уникальный стиль поведения — почти как характер.

Если приводить аналогию с реальными личностями:
- Gemini = Генри Киссинджер
- OpenAI = Вудро Вильсон
- Anthropic = Джордж Буш-старший

Современные LLM практически ведут себя как полноценные стратеги: формулируют цели, оценивают оппонентов и формируют осторожные, но устойчивые пути к победе.

🔜 Подробности

@ai_machinelearning_big_data


#AI #ML #MMLM #research
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
65👍36🔥15😁9🥰1