🌟 Школа аналитиков данных от Big Data MWS признана лучшим образовательным проектом в области Data Science
О победе в премии «Data Fusion Awards 2025» в номинации «Data Fusion в образовании» сообщает МТС. Награда досталась проекту «Школа аналитиков данных», который уже три года успешно готовит специалистов в сфере Data Science.
Программа включает углубленное изучение Python, основы классического машинного обучения и методы создания ML-моделей для различных отраслей: геоаналитики, рекламы и финтеха. Обучение проходит через онлайн-вебинары, домашние задания и итоговые проекты под руководством экспертов центра Big Data MWS. Курс бесплатен и открыт для всех — от школьников до опытных IT-специалистов.
За 10 месяцев обучения студенты получают практические навыки и теоретические знания уровня Junior, необходимые для успешного старта карьеры. На третий поток поступило почти 5 тысяч заявок, а многие выпускники уже работают в Big Data MWS.
@ai_machinelearning_big_data
О победе в премии «Data Fusion Awards 2025» в номинации «Data Fusion в образовании» сообщает МТС. Награда досталась проекту «Школа аналитиков данных», который уже три года успешно готовит специалистов в сфере Data Science.
Программа включает углубленное изучение Python, основы классического машинного обучения и методы создания ML-моделей для различных отраслей: геоаналитики, рекламы и финтеха. Обучение проходит через онлайн-вебинары, домашние задания и итоговые проекты под руководством экспертов центра Big Data MWS. Курс бесплатен и открыт для всех — от школьников до опытных IT-специалистов.
За 10 месяцев обучения студенты получают практические навыки и теоретические знания уровня Junior, необходимые для успешного старта карьеры. На третий поток поступило почти 5 тысяч заявок, а многие выпускники уже работают в Big Data MWS.
@ai_machinelearning_big_data
😁34🤣20👍14❤12🔥7
Традиционные методы файн‑тюнинга моделей под конкретный образ персонажа обычно либо:
InstantCharacter решает обе проблемы сразу:
Высокое качество
- Построен на базе DiT-моделей, которые по качеству превосходят классические UNet‑архитектуры.
Китайцы сделали адаптер с каскадными энкодерами‑трансформерами, который модулирует признаки персонажа и взаимодействует с латентным пространством DiT.
Фреймворк обучен и на огромном датасете - более 10 миллионов примеров, поделённых на парные и непарные (текст+изображение) примеры.
Трёхэтапное обучение:
Результаты:
В сравнении с предыдущими подходами InstantCharacter задает высокую планку качества в задачах character-driven image generation.
@ai_machinelearning_big_data
#Hunyuan #Tencent #InstantCharacter
#OpenSource #AI #CharacterCustomization
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59❤25🔥16
Команда Fundamental AI Research (FAIR) компании Марка Цукерберга представила серию новых разработок: методики и модели, улучшающие компьютерное зрение, 3D-локализацию объектов и совместное обучение языковых агентов. Все модели, техотчеты, датасеты и код этих проектов уже доступны на платформах Hugging Face и GitHub.
Perception Encoder - новый виток развития в сфере обработки визуальной информации. Модель, обученная с помощью этой методики на масштабных данных, превосходит аналоги в задачах классификации изображений и видео, включая сложные сценарии — распознавание ската, зарывшегося в морское дно, или крошечной птицы на заднем плане снимка. Благодаря интеграции с LLM, Encoder улучшает ответы на визуальные вопросы, описание сцен и понимание пространственных отношений между объектами.
Для задач, требующих анализа видео и текста, Meta выпустила Perception Language Model (PLM). Ее обучали на 2,5 млн. новых аннотированных видеозаписей — это крупнейший датасет для понимания действий и контекста в динамике. PLM доступна в трёх вариантах (1, 3 и 8 млрд параметров). Дополнительный бонус — PLM-VideoBench, бенчмарк для оценки тонкого понимания сцен, который заполняет пробелы существующих тестов.
Как заставить робот найти красную чашку на столе или вазу возле телевизора? Locate 3D решает эту задачу через анализ 3D-точечных облаков и текстовых подсказок. Модель учитывает пространственные связи и контекст, отличая «вазу у TV» от «вазы на столе». В основе — трехэтапный пайплайн: предобработка данных, кодирование 3D-сцены и декодирование запроса. Для обучения использовали 130 тыс. аннотаций из ARKitScenes и ScanNet, что вдвое увеличило объём доступных данных для локализации объектов.
Dynamic Byte Latent Transformer - архитектура, которая работает на уровне байтов, а не токенов, что повышает устойчивость к ошибкам, ускоряет обработку и "отменяет" необходимость токенизации для масштабирования. На тесте CUTE модель показывает преимущество в +55 пунктов против традиционных подходов.
Совместное решение задач — следующий этап развития ИИ. Collaborative Reasoner — это фреймворк, где два агента ведут диалог, чтобы прийти к общему решению. Они могут спорить, аргументировать и согласовывать ответы на сложные вопросы. Для обучения используют синтетические диалоги, которые генерирует сама модель. Результаты впечатляют: на некоторых задачах совместная работа даёт прирост эффективности до 29% по сравнению с одиночным агентом.
@ai_machinelearning_big_data
#AI #ML #LLM #CV #NLP #FAIR
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66🔥29❤25
С 31 марта по 4 апреля 2025 года на Kaggle прошел ряд интенсивов по генеративному ИИ, теперь все материалы с доступны для самостоятельного обучения.
Изучите эволюцию больших языковых моделей (LLM), от трансформеров до методов ускорения инференса.
Описание техник создания эффективных промптов для взаимодействия с ИИ.
Вы научитесь использовать API LLM, для создания интерактивных приложений.
Реализуйте проекты с использованием Retrieval-Augmented Generation (RAG) и семантического поиска.
Настройте векторные базы данных для эффективного хранения и поиска информации.
Примените эмбеддинги для улучшения качества генерации текста.
Разработайте персонализированных ИИ-ассистентов, способных отвечать на сложные запросы.
Используйте передовые методы генерации для создания реалистичных диалогов.
Примените полученные знания в финальном проекте, продемонстрировав свои навыки в области генеративного ИИ.
🧠 Примеры проектов:
- AI Health Assistant: - Персонализированный медицинский помощник, использующий RAG и семантический поиск для предоставления точной информации.
Kaggle
- NewsGenius AI: Интеллектуальный агрегатор новостей, анализирующий и обобщающий актуальные события.
🔗 Курс
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥103👍36❤29🥰9
InstructPipe — это AI-ассистент, который преобразует текстовые команды в визуальные блок-схемы, представляющие собой пайплайны машинного обучения.
Система использует два модуля больших языковых моделей (LLM) и интерпретатор кода для генерации псевдокода и его визуализации в редакторе графов.
Это low-code подход: вы просто соединяете готовые компоненты (ноды) без написания кодп.
@ai_machinelearning_big_data
#Google #InstructPipe
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤85👍52🔥27🙊9