223K subscribers
3.87K photos
646 videos
17 files
4.48K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Hunyuan3D-1.0: генерации 3D-моделей по тексту и изображению.

Hunyuan3D-1.0 - двухэтапная система для быстрой генерации 3D-моделей по текстовым запросам или изображениям. Модель представлена в трех версиях:

🟢Hunyuan3D-1 Lite - облегченная версия многовидовой генерации;
🟢Hunyuan3D-1 Standard - стандартная версия многовидовой генерации;
🟢Hunyuan3D-1 Sparse view reconstruction - модель реконструкции с ограниченным набором видов.

▶️ Ключевые особенности Hunyuan3D-1.0:

🟠Генерация 3D-модели занимает всего 10 секунд для облегченной версии и 25 секунд для стандартной версии;

🟠Высокая детализация текстур и геометрии;

🟠Динамическая регулировка CFG в процессе генерации;

🟠Модуль суперразрешения повышает разрешение трехплоскостных карт для создания детализированных аспектов 3D-формы;

🟠Использование функции знаковых расстояний (SDF) позволяет преобразовать неявную репрезентацию 3D-формы в явную сетку с помощью алгоритма Marching Cubes.

▶️ Пайплайн Hunyuan3D-1.0:

Первый этап Hunyuan3D-1.0 основан на многовидовой диффузионной модели, которая генерирует набор RGB-изображений с разных ракурсов. Эти изображения, фиксирующие детали 3D-объекта с различных точек зрения, поступают на вход во второй этап - модель реконструкции.

Модель реконструкции преобразует многовидовые изображения в готовую 3D-модель. Она обучена обрабатывать шумы и несоответствия, присущие многовидовой диффузии, и использовать информацию из входного изображения или текста для восстановления 3D-структуры.

▶️ Как обучалась Hunyuan3D-1.0:

Обучение многовидовой диффузионной модели и модели реконструкции осуществляется раздельно. Lite-версия многовидовой модели использует SD-2.1 в качестве основы, a standard-версия основана на SDXL.

Модель реконструкции сначала обучалась на многовидовых изображениях разрешением 256x256, а затем донастраивалась на изображениях разрешением 512x512. Весь процесс обучения проводился на 64 графических процессорах A100.

▶️ Оценка Hunyuan3D-1.0:

Для оценки Hunyuan3D-1.0 использовались датасеты GSO и OmniObject3D с выборкой около 70 объектов. В качестве метрик использовались расстояние Чамфера (CD) и F-мера, которые являются стандартными показателями точности реконструкции 3D-форм.

Standard-версия модели показала лучшие результаты по метрикам CD и F-score на обоих датасетах. Hunyuan3D-1.0 достигла оптимального баланса между качеством и скоростью по результаты сравнения с другими моделями.


Инференс Hunyuan3D-1.0 доступен в CLI и с Gradio UI. Описание ключей запуска для CLI и список преднастроенных скриптов для запуска можно найти в репозитории проекта на Github.

⚠️ Позиции камеры на инференсе зафиксированы на азимуте (относительно позиции камеры на входе) +0, +60, +120, +180, +240, +300.

⚠️ Рекомендованная VRAM - 40GB, но по неподтвержденным данным из issue - запускается c 20 GB на 3090.


▶️Локальный запуск с GradioUI:

# Cloning the repository
git clone https://github.com/tencent/Hunyuan3D-1
cd Hunyuan3D-1

# Create conda env
conda create -n hunyuan3d-1 python=3.9
conda activate hunyuan3d-1
bash env_install.sh

# Run Gradio UI with Hunyuan3D-1.0 Lite
python app.py --use_lite

# Open in browser link https://127.0.0.1:8080/


📌Лицензирование: Tencent Hunyuan Non-Commercial License.


🟡Модель
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TextTo3D #ImgTo3D #Hunyuan3D #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥8🥰4😁32
✔️ Nvidia обогнала Apple и стала самой дорогой компанией в мире.

Акции Nvidia достигли отметки в $139,93, что привело к рыночной капитализации в $3,43 трлн, превысив показатель Apple в $3,38 трлн. Microsoft Corp., которую Nvidia обогнала в прошлом месяце, имеет рыночную капитализацию в $3,06 трлн. С конца 2022 года акции Nvidia выросли более чем на 850%.

Рост компании обусловлен ее доминирующим положением на рынке чипов, используемых для ИИ. Nvidia обеспечивает около четверти роста индекса S&P 500 в этом году, составляя 7% от его веса. Аналитики прогнозируют, что выручка Nvidia более чем удвоится в текущем финансовом году и вырастет еще на 44% в следующем.
bloomberg.com

✔️ ML помогает найти перспективные составы для натрий-ионных аккумуляторов.

Команда из Токийского университета науки (TUS) разработала ML-модель, которая проанализировала базу данных из 100 образцов катодов на основе оксидов переходных металлов (NaMeO2) с 68 различными составами.

Модель выявила Na [Mn0.36Ni0.44Ti0.15Fe0.05] O2 как оптимальный состав для достижения максимальной плотности энергии. Для проверки точности прогнозов модели были синтезированы образцы с этим составом, и тесты показали соответствие экспериментальных данных прогнозам. Этот метод может значительно ускорить разработку Na-ion аккумуляторов, перспективной альтернативой Li-ion благодаря доступности натрия и более низкой стоимости.
techexplorist.com

✔️ Китай выбыл из гонки за литографией с высокой числовой апертурой для производства чипов 1 нм.

Китай больше не может конкурировать в производстве высокотехнологичных микрочипов из-за санкций США, которые запрещают ему приобретать системы EUV-литографии, необходимые для создания чипов с технологическим процессом 5 нм и меньше.

TSMC (Тайвань) и Intel (США) устанавливают новейшие системы EUV-литографии с высокой числовой апертурой (High-NA EUV) от ASML для запуска производства чипов 1 нм к 2030 году, Китай ограничен системами ArF (Deep Ultra-Violet) предыдущего поколения, которые позволяют создавать чипы только до 5 нм.

Системы High-NA EUV, увеличивающие плотность транзисторов на кристалле в 2,9 раза, стоят не менее 350 млн. долл. за штуку. Хотя Китай пытается разработать собственное оборудование для литографии, этот процесс идет медленнее, чем планировалось.
asiatimes.com

✔️ Microsoft представила систему Magnetic-One для управления несколькими ИИ-агентами.

Magnetic-One - система с открытым исходным кодом, доступная разработчикам, в том числе для коммерческих целей, по специальной лицензии Microsoft.

Система основана на агенте-оркестраторе, который управляет 4 другими агентами: Websurfer, FileSurfer, Coder и ComputerTerminal. Websurfer может управлять веб-браузерами на основе Chromium, FileSurfer читает локальные файлы, Coder пишет код, а ComputerTerminal предоставляет консоль для выполнения программ Coder.

Оркестратор распределяет задачи между агентами, отслеживает их прогресс и может корректировать план действий при возникновении ошибок. Хотя Magnetic-One был разработан для использования с GPT-4o, он не зависит от конкретной языковой модели.
microsoft.com

✔️ NVIDIA представляет новые инструменты ИИ и среду для разработки роботов.

NVIDIA представила на конференции Conference for Robot Learning (CoRL) в Мюнхене ряд новинок, которые позволят разработчикам значительно ускорить свою работу над роботами с поддержкой ИИ.

Среди новинок - общедоступная среда обучения роботов NVIDIA Isaac Lab; 6 новых рабочих процессов обучения роботов-гуманоидов для Project GR00T, инициативы по ускорению разработки роботов-гуманоидов; а также новые инструменты для разработки моделей мира для обработки и курирования видеоданных - токенизатор NVIDIA Cosmos и NVIDIA NeMo Curator для обработки видео.

Токенизатор Cosmos обеспечивает визуальную токенизацию, разбивая изображения и видео на токены с высокой степенью сжатия. Cosmos работает до 12 раз быстрее, чем современные токенизаторы, а NeMo Curator обеспечивает обработку видео до 7 раз быстрее, чем неоптимизированные конвейеры.
blogs.nvidia.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍15🔥3
🌟 SmolLM2: второе поколение компактных LLM от HuggingFace.

Hugging Face представила SmolLM2, новую серию SLM, оптимизированных для работы на устройствах c ограниченными ресурсами и предназначенных для выполнения задач генерации и обобщения текста на английском языке и вызова функций.

Модели SmolLM2 были обучены на миксе из наборов данных FineWeb-Edu, DCLM и Stack. Тестирование после обучения показало превосходство старшей модели SmolLM2-1.7B над Meta Llama 3.2 1B и Qwen2.5-1.5B.

Модели доступны в трёх конфигурациях: 135М, 360М и 1.7B параметров, каждая модель имеет свою Instruct-версию, а 1.7B и 360М еще и официальные квантованные версии GGUF:

SmolLM2-1.7B🟢SmolLM2-1.7B-Instruct🟢Instruct GGUF

SmolLM2-360M🟠SmolLM2-360M-Instruct 🟠Instruct GGUF

SmolLM2-135M 🟠SmolLM2-135M-Instruct 🟠Instruct GGUF от комьюнити


▶️Пример запуска модели SmolLM2-1.7B в полной точности на Transformers :

from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))


📌Лицензирование: Apache 2.0 License.


🟡Коллекция моделей на HF
🟡Demo SmolLM2 1.7B


@ai_machinelearning_big_data

#AI #ML #SLM #Huggingface #SmolLM2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥73
🌟 Cosmos Tokenizer: эффективная токенизация изображений и видео от NVIDIA.

Cosmos Tokenizer - набор токенизаторов для изображений и видео с высокой степенью сжатия при сохранении качества реконструкции, представленный на конференции Conference for Robot Learning 2024, которая проходит до 9 ноября в Мюнхене.

Cosmos Tokenizer предлагает непрерывную (C) и дискретную (D) токенизацию для изображений (I) и видео (V), что формирует 4 типа токенизаторов: CI, DI, CV и DV.

Cosmos Tokenizer имеет внушительные показатели сжатия: 8x или 16x для пространственного сжатия изображений и 4x или 8x для временного сжатия видео, при этом работает до 12 раз быстрее, чем другие современные токенизаторы, сохраняя при этом высокое качество изображения.

Такая эффективность обусловлена легкой временно-причинной архитектурой, использующей причинную временную свертку и слои внимания. Этот дизайн архитектуры гарантирует, что обработка каждого кадра зависит только от текущих и прошлых кадров, сохраняя временную согласованность видео.

Для оценки Cosmos Tokenizer использовались стандартные наборы данных и новый набор данных TokenBench, созданный NVIDIA. Cosmos Tokenizer сравнивался с современными токенизаторами с использованием метрик PSNR, SSIM, rFID и rFVD.

Результаты тестирования показали превосходство Cosmos Tokenizer над существующими методами как по качеству реконструкции, так и по скорости работы.

▶️ В репозитории на Github опубликован код для установки, сборки docker Cosmos Tokenizer, примеры запуска для в непрерывном латенте, кодирования в дискретные токены, запуск токенизаторов на примерах изображений и видео из тестового набора и запуск с Pytorch.


📌Лицензирование: NVIDIA Open Model License


🟡Страница проекта
🟡Набор на HF
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #NVIDIA #Tokenizer #Cosmos
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4614👍41🥰1
✔️ Mistral AI представила API для модерации контента.

Mistral AI выпустила новый API для модерации контента, который позволяет пользователям выявлять нежелательный текст по нескольким критериям. Этот API, используемый в сервисе Le Chat, классифицирует текст по 9 категориям и доступен в двух вариантах: для обычного текста и для диалогов.

Модель, лежащая в основе API, обучена на 11 языках, включая русский, и учитывает контекст беседы при классификации сообщений. Mistral AI стремится обеспечить безопасность использования ИИ и считает, что системные меры защиты имеют решающее значение для защиты пользователей.
mistral.ai

✔️ Локальная структура обучающих данных улучшает пошаговое рассуждение в языковых моделях.

В Университете Стэнфорда изучили эффективность пошаговых рассуждений в LLM, протестировав гипотезу о том, что рассуждения эффективны, когда обучающие данные состоят из локальных кластеров переменных, которые сильно влияют друг на друга. Эта кластерная структура позволяет моделировать связи между переменными, которые не встречались вместе в процессе обучения.

Для проверки этой гипотезы авторы обучали трнасформерные модели с нуля на синтетических данных с различной структурой. Данные были сгенерированы из байесовских сетей, но в каждой выборке присутствовала только часть переменных, создавая локальную структуру.

Результаты показали, что генерация промежуточных переменных (т.е. пошаговое рассуждение) значительно улучшает способность моделей правильно оценивать условные вероятности для пар переменных, которые не наблюдались вместе в процессе обучения.
arxiv.org

✔️ Nous Research запускает чат-бот с доступом к модели Hermes 3-70B.

Компания Nous Research, известная разработкой «персонализированных и неограниченных» моделей ИИ, представила свой первый чат-бот Nous Chat. Веб-сервис предоставляет доступ Hermes 3-70B, основанной на Llama 3.1. Чат-бот отличается высокой скоростью работы и способностью предоставлять ссылки на источники в интернете, хотя иногда он выдумывает эти ссылки.

Несмотря на заявленную цель создания моделей ИИ без ограничений, Nous Chat все же имеет некоторые ограничения этического характера. Хотя Nous Chat пока не обладает многими дополнительными функциями, он может стать альтернативой другим чат-ботам, особенно если ограничения контента будут сняты в соответствии с заявленными целями Nous.
venturebeat.com

✔️ Andreessen Horowitz отмечает снижение темпов развития моделей ИИ.

Andreessen Horowitz, несмотря на активное инвестирование в стартапы, работающие с ИИ, заметила снижение темпов улучшения возможностей моделей ИИ в последние годы.

Марк Андрессен, один из основателей фонда, отметил, что два года назад модель GPT-3.5 от OpenAI значительно опережала конкурентов. Однако сейчас существует 6 моделей с аналогичными возможностями, которые достигли потолка в развитии. Одним из основных препятствий для разработчиков ИИ является глобальная нехватка GPU.

Другой проблемой становится доступность обучающих данных, необходимых для обучения моделей ИИ. С апреля 2023 по апрель 2024 года доступ к 5% всех данных и 25% данных из самых качественных источников был ограничен из-за ужесточения правил использования текстов, изображений и видео для обучения ИИ. В результате крупные лаборатории ИИ нанимают тысячи специалистов для создания обучающих данных вручную.
observer.com

✔️ Windows Terminal получил поддержку ChatGPT и GitHub Copilot.

Microsoft добавила поддержку чат-ботов с ИИ в nightly-ветку Windows Terminal. Версия доступна для скачивания только на странице проекта на GitHub в разделе «Установка Windows Terminal Canary».

После установки Windows Terminal Canary необходимо включить поддержку «Terminal Chat» в меню, а затем добавить ключ API от OpenAI, GitHub или Azure.

Идея интеграции заключается в том, чтобы не покидая среды терминала использовать ChatGPT, например, как создать папку в PowerShell.
pcworld.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍158🔥3
🌟 AdaCache: ускорение DiT в генерации видео через необучаемое адаптивное кэширование.

AdaCache основан на наблюдении, что «не все видео одинаковы»: некоторым видео требуется меньше шагов денойза для достижения приемлемого качества, чем другим.

AdaCache использует кэширование остаточных вычислений в блоках трансформера (например, выходные данные механизмов внимания или MLP) на определенном шаге диффузии и повторного использования их на нескольких последующих шагах, количество которых зависит от генерируемого видео.

Решение о том, когда нужно выполнить следующее вычисление, принимается на основе метрики расстояния, которая измеряет скорость изменения между сохраненными и текущими представлениями.

Чтобы избежать артефактов для динамики используется регуляризация движения (MoReg).

MoReg оценивает движения в латентном пространстве на основе разности остаточных кадров, а чтобы эта оценка была эффективна на ранних шагах диффузии, MoReg вычисляет градиент движения, который выступает в качестве разумного раннего предиктора. И оценка движения, и градиент движения используются в качестве масштабирующего фактора метрики расстояния для регуляризации схемы кэширования AdaCache.

AdaCache был протестирован на Open-Sora-v1.2, Open-Sora-Plan-v1.1 и Latte. Результаты показали, что AdaCache обеспечивает ощутимое ускорение без ущерба для качества генерации. Фактически, он достигает ускорения в 4.49x, 3.53x и 2.46x соответственно на трех рассмотренных базовых видео.

Прикладной кейс использования AdaCache предлагается на бейслайне Open-Sora с вариантами запуска: Baseline, AdaCache и AdaCache+MoReg.

⚠️ Пример инференса рекомендуются на одном GPU A100 (80Gb)

▶️Инференс:

# Baseline
bash run_sample_video.sh configs/sample.py

# AdaCache
bash run_sample_video.sh configs/sample_adacache.py

# AdaCache+MoReg
bash run_sample_video.sh configs/sample_adacache_moreg.py


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DiT #AdaCache #Text2Video
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍185🔥4
✔️ Samsung представила обновленный ИИ Bixby на базе LLM.

Обновленный Bixby, дебютировавший на эксклюзивных для китайского рынка складных смартфонах Samsung W25 и W25 Flip, способен понимать сложные инструкции, извлекать информацию с экрана, например, из карт или фотографий, а также запоминать контекст предыдущих разговоров.

В демонстрации Samsung Bixby смог дать рекомендации по одежде, основываясь на текущей погоде, и пошагово объяснил, как добавить водяной знак на изображение. Bixby поддерживает голосовой и текстовый ввод, его можно вызвать из любого приложения или экрана. Ожидается, что обновленный ассистент станет доступен на международном рынке с выходом One UI 7 в начале следующего года.
techradar.com

✔️ Робот-художник Ai-Da продал портрет Алана Тьюринга за рекордную сумму.

На аукционе Sotheby's в Нью-Йорке картина "AI God: Портрет Алана Тьюринга", созданная роботом-художником Ai-Da, была продана за 1,08 млн. долларов. Робот Ai-Da, оснащенный искусственным интеллектом и роботизированными руками, использует большие языковые модели для общения.

Ai-Da создал портрет Тьюринга, используя камеры в своих "глазах" для анализа фотографии ученого и создания эскизов. Робот нарисовал 15 отдельных частей лица Тьюринга, которые затем были объединены в единое изображение и напечатаны на большом холсте с помощью 3D-принтера.
cnn.com

✔️ TSMC прекращает поставки чипов искусственного интеллекта китайским компаниям.

Тайваньская компания сообщила своим китайским клиентам о прекращении поставок передовых чипов для ИИ, произведенных по технологии 7 нанометров и меньше. Это решение связано с ужесточением контроля со стороны США за доступом Китая к передовым технологиям.

TSMC будет требовать одобрения Вашингтона для любых будущих поставок чипов в Китай. По словам источников, данный шаг не окажет существенного влияния на выручку TSMC. Компания подчеркнула, что соблюдает все применимые правила и экспортный контроль. Ранее сообщалось, что чипы TSMC были обнаружены в продукции Huawei, находящейся под экспортными ограничениями США.
businessinsider.com

✔️ Суд в Нью-Йорке отклонил иск СМИ к OpenAI по авторскому праву.

Федеральный суд Южного округа Нью-Йорка отклонил иск, поданный изданиями Raw Story и AlterNet против компании OpenAI. Истцы обвиняли OpenAI в нарушении Закона об авторском праве в цифровую эпоху (DMCA), утверждая, что компания намеренно удаляла информацию об авторских правах: названия статей и имена авторов, из материалов, использованных для обучения ChatGPT.

Судья Коллин Макмахон поддержала ходатайство OpenAI о прекращении дела, указав, что истцы не доказали фактического ущерба своим предприятиям в результате удаления информации об авторских правах. Суд признал маловероятным, что ChatGPT будет воспроизводить материалы Raw Story и AlterNet дословно, учитывая огромный объем информации в его базе данных.

Судья Макмахон оставила возможность для подачи дополненной жалобы в будущем. Это решение может иметь значение для других аналогичных исков против OpenAI и других компаний, занимающихся генеративным ИИ.
gizmodo.com

✔️ Эндрю ЫН, основатель DeepLearningAI и Coursera, опубликовал подробный гид о том, как построить успешную карьеру в сфере искусственного интеллекта. В нем он рассказывает, как освоить базовые навыки, получить первые проекты и устроиться на работу.
Ссылка

✔️ Google открыла доступ к Gemini через библиотеку OpenAI.

Разработчики теперь могут использовать модели Gemini от Google через библиотеку OpenAI и REST API. Поддерживаются API завершения чата и API эмбедингов. В ближайшие недели Google планирует расширить совместимость.

В анонсе на странице Google for Developers представлены примеры кода на Python, Typescript/Javascript и REST для взаимодействия с Gemini API. Google рекомендует разработчикам, не использующим библиотеки OpenAI, обращаться к Gemini API напрямую.
developers.googleblog.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍297🔥4🤔2