227K subscribers
3.8K photos
632 videos
17 files
4.45K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 Inf-DiT: Upscale изображения до любого разрешения с помощью диффузионного трансформера с эффективным использованием памяти

Диффузионные модели показывают замечательные результаты при создании изображений. Однако из-за квадратичного увеличения памяти при генерации изображений сверхвысокого разрешения (например, 4096×4096) разрешение генерируемых изображений часто ограничивается 1024×1024.

Inf-DiT предлагает однонаправленный механизм внимания блоков, который может адаптивно регулировать затраты памяти во время процесса вывода и обрабатывать глобальные зависимости.

Комплексные эксперименты показывают, что этот метод демонстрирует отличную производительность при создании изображений сверхвысокого разрешения.
По сравнению с широко используемыми структурами UNet, Inf-Dit может 5-кратно сократить использование VRAM при генерации изображений размером 4096 × 4096.

Адаптацию для ComfyUI обещают к концу июля.

🟡 Arxiv
🖥 GitHub [ Stars: 298 | Issues: 12 | Forks: 12 ]
🟡 Модель (прямая загрузка)

#Upscale #DiT #Diffusers #Img2Img

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34🔥115
🌟 Allegro: открытая text-to-video модель генерации видео в 720p.

Allegro - модель от Rhymes AI для генерации видео по текстовому промпту. Allegro генерирует 6-секундные видеоролики с разрешением 720p и частотой 15 кадров в секунду. Модель отличается высокой детализацией, плавностью переходов в движении и способностью визуализировать сложные сцены.

Allegro основана на трех ключевых технологиях:

🟢Обработка больших объемов видеоданных.

Для обучения модели использовался массив данных из 106 млн. изображений и 48 млн. видеороликов с детальными аннотациями.

🟢Сжатие видео в визуальные токены.

В Allegro используется Video Variational Autoencoder (VideoVAE) с 175 млн. параметров. Он кодирует видео в компактное скрытое пространственно-временное представление и способен работать в разрядностях точности FP32/TF32/BF16/FP16.

🟢Масштабируемая архитектура Diffusion Transformer.

Ядро Allegro - масштабируемая архитектура Diffusion Transformer (DiT) с 3D-позиционным кодированием RoPE и полным 3D-вниманием размером в 2.8 млрд. параметров. DiT моделирует пространственные и временные зависимости в видеокадрах и отвечает за качество генерации и плавность движения. Поддерживаемая разрядность - BF16/FP32/TF32.

Для локального запуска потребуются : Python >= 3.10, PyTorch >= 2.4, CUDA >= 12.4

⚠️ Интерполяция до 30 FPS возможна с помощью EMA-VFI.

⚠️ С использованием параметра --enable_cpu_offload, инференс возможен на 9.3Gb VRAM, без использования выгрузки потребность Allegro около 27Gb VRAM.

⚠️ Модель не может генерировать знаменитостей, разборчивый текст, конкретные места, улицы или здания.

▶️Параметры инференса в CLI:

# Run inference
python single_inference.py

# Keys
--user_prompt '%prompt%'
--save_path '%full path for output file%'
--vae '%path to VAE'
--dit '%path to DiT%'
--text_encoder '%path to text encoder%'
--tokenizer '%path to text tokenizer%'
--guidance_scale 7.5
--num_sampling_steps 100
--seed 42


📌Лицензирование: Apache 2.0 license.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Сообщество в Discord
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Text-to-Video #DiT #Allegro
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍157🔥5🎉4
🌟 AdaCache: ускорение DiT в генерации видео через необучаемое адаптивное кэширование.

AdaCache основан на наблюдении, что «не все видео одинаковы»: некоторым видео требуется меньше шагов денойза для достижения приемлемого качества, чем другим.

AdaCache использует кэширование остаточных вычислений в блоках трансформера (например, выходные данные механизмов внимания или MLP) на определенном шаге диффузии и повторного использования их на нескольких последующих шагах, количество которых зависит от генерируемого видео.

Решение о том, когда нужно выполнить следующее вычисление, принимается на основе метрики расстояния, которая измеряет скорость изменения между сохраненными и текущими представлениями.

Чтобы избежать артефактов для динамики используется регуляризация движения (MoReg).

MoReg оценивает движения в латентном пространстве на основе разности остаточных кадров, а чтобы эта оценка была эффективна на ранних шагах диффузии, MoReg вычисляет градиент движения, который выступает в качестве разумного раннего предиктора. И оценка движения, и градиент движения используются в качестве масштабирующего фактора метрики расстояния для регуляризации схемы кэширования AdaCache.

AdaCache был протестирован на Open-Sora-v1.2, Open-Sora-Plan-v1.1 и Latte. Результаты показали, что AdaCache обеспечивает ощутимое ускорение без ущерба для качества генерации. Фактически, он достигает ускорения в 4.49x, 3.53x и 2.46x соответственно на трех рассмотренных базовых видео.

Прикладной кейс использования AdaCache предлагается на бейслайне Open-Sora с вариантами запуска: Baseline, AdaCache и AdaCache+MoReg.

⚠️ Пример инференса рекомендуются на одном GPU A100 (80Gb)

▶️Инференс:

# Baseline
bash run_sample_video.sh configs/sample.py

# AdaCache
bash run_sample_video.sh configs/sample_adacache.py

# AdaCache+MoReg
bash run_sample_video.sh configs/sample_adacache_moreg.py


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DiT #AdaCache #Text2Video
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍185🔥4