336K subscribers
4.13K photos
753 videos
17 files
4.66K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🌟 PuLID+FLUX: перенос внешности на генерации в FLUX .

PuLID (Pure and Lightning ID Customization) - метод генерации на основе внешности для диффузных моделей с управлением текстовым промптом. Ключевое преимущество PuLID состоит в его способности генерировать изображения с высокой степенью соответствия заданной личности, следуя заданным стилю и композиции.

PuLID для SD существует относительно давно и неплохо работал с моделями SDXL. Теперь этот метод стал доступен для FLUX-dev:

🟢ID-кодер перенесен из структуры MLP в структуру Transformer;

🟢добавлены дополнительные блоки перекрестного внимания чередованием с DIT-блоками для взаимодействия между ID и DIT;

🟢SDXL-Lightning, который в оригинальном методе PuLID отвечал за первоначальную генерацию шума в латентном пространстве, в PuLID для FLUX опционален;

🟢добавлена поддержка fp8-версий FLUX для запуска на потребительских GPU;

🟢запуск bf16 на RTX 3090-4090 возможен с параметром --aggressive_offload, но генерация будет выполняться очень, очень, очень медленно.

В PuLID for FLUX есть два критически важных гиперпараметра:

timestep to start inserting ID. Этот параметр управляет там, в какой момент ID (лицо с входного изображения) будет вставлен в DIT (значение 0 - ID будет вставляться с первого шага). Градация: чем меньше значение - тем более похожим на исходный портрет будет результат. Рекомендованное значение для фотореализма - 4.

true CFG scale. Параметр, модулирующий CFG-значение. Исходный процесс CFG метода PuLID, который требовал удвоенного количества этапов вывода, преобразован в шкалу управления чтобы имитировать истинный процесс CFG с половиной шагов инференса.

Для возможности гибкой настройки результатов, разработчик оставил оба гиперпараметра : CFG FLUX и true CFG scale. Фотореализм получается лучше с применением true CFG scale, но если финальное сходство внешности с оригиналом не устраивает - вы можете перейти на обычный CFG.

Запуск возможен несколькими способами: GradioUI, Google Collab (free tier), Google Collab (pro tier) или с одним из имплементаций для среды ComfyUI:

🟠собственная реализация сообщества ComfyUI;
🟠diffusers-based implementation.

⚠️ Важно!

🟢проект находится в бета-версии, точность ID может быть невысокой для некоторых мужcких лиц, возможно, модель нуждается в дополнительном обучении;

🟢для FLUX-FP8 версия Pytorch >= 2.0, для остальных >=2.4.1

▶️Установка и запуск GradioUI:

# clone PuLID repo
git clone https://github.com/ToTheBeginning/PuLID.git
cd PuLID

# create conda env
conda create --name pulid python=3.10

# activate env
conda activate pulid

# Install dependent packages
# 1. For SDXL or Flux-bf16, install the following
pip install -r requirements.txt

# 2. For Flux-fp8, install this
pip install -r requirements_fp8.txt

# Run Gradio UI
python app.py


📌Лицензирование : Apache 2.0 License.


🟡Arxiv
🟡Demo
🟡Google Collab
🖥Github


@ai_machinelearning_big_data

#AI #ML #FLUX #GenAI #PuLID
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥1210❤‍🔥1
💊 Machine Learning: Медицинский дайджест за период 7.09 - 14.09 2024 года

🟩 BrainWave: модель для анализа сигналов головного мозга.

BrainWave – модель, обученная на 40 000 часах инвазивных (iEEG) и неинвазивных (EEG) записей мозговой активности 16 тыс пациентов. Это первая фундаментальная модель для анализа сигналов мозга, объединяющая данные из разных источников.

🟩 DS-ViT: Visual Transformer для ранней диагностики болезни Альцгеймера.

Dual-Stream Vision Transformer (DS-ViT) -метод, который объединяет сегментацию и классификацию для улучшения точности обучения моделей, обрабатывающих снимки МРТ головного мозга.

Он использует FastSurfer в качестве обучающей модели для детальной сегментации для обучаемой ViT-модели ADAPT (модель диагностики болезни Альцгеймера).

🟩 EyeCLIP: фундаментальная VLM для офтальмологических изображений.

EyeCLIP, визуально-языковая фундаментальная модель (VLM), обученная на более чем 2,77 миллионах мультимодальных офтальмологических изображений и 11 180 текстовых описаний от 128 000 пациентов.

Модель может выполнять задачи классификации заболеваний глаз, прогнозирование системных заболеваний, поиск информации по изображению и тексту и ответы на вопросы, связанные с изображениями патологии глаз.

🟩 Возможности SAM для сегментации опухолей мозга.

В исследовании изучается эффективность SAM для сегментации опухолей головного мозга на основе набора данных BraTS2019, который содержит изображения четырех модальностей (T1, T1ce, T2, FLAIR). Авторы оценивают эффективность SAM с использованием двух типов маркирования - точки и рамки и анализируют влияние количества маркирования на точность сегментации.

Результаты показывают, что SAM с маркировкой в виде рамок превосходит по точности маркировку в виде точек. Увеличение количества точек улучшает производительность до определенного предела, после которого точность начинает снижаться. Комбинирование точечных и рамочных маркировок позволяет добиться наилучших результатов.

🟩 MEDIC: Оценка языковых моделей для клинического применения.

MEDIC использует пять ключевых измерений клинической компетентности: медицинское мышление, этические аспекты и предвзятость, понимание данных и языка, контекстное обучение и клиническая безопасность.

Оценка проводится тестированием на задачах: ответы на закрытые и открытые вопросы, суммирование медицинских текстов и создание клинических заметок. Для оценки безопасности моделей используется набор данных Med-Safety, содержащий 900 сценариев с потенциально опасными медицинскими запросами.

Приложения с использованием языковых моделей.


🟪 KARGEN: генерация отчетов рентгенографии грудной клетки с использованием графа знаний и больших языковых моделей.

KARGEN - фреймворк, объединяющий большие языковые модели с графом знаний, специально разработанным для анализа рентгенограмм грудной клетки.

Архитектура KARGEN: энкодеры визуальных признаков (Swin Transformer), модуль слияния (element-wise fusion + modality-wise fusion) и генератор отчетов.

Энкодер визуальных признаков извлекает признаки из рентгеновского изображения, граф знаний, построенный на основе взаимосвязей между 14 заболеваниями из набора данных Chexpert, используется для извлечения признаков, связанных с этими заболеваниями.

🟪 i-MedRAG: итеративный поиск информации для ответов на сложные медицинские вопросы.

i-MedRAG - архитектура RAG, предназначенная для ответов на сложные медицинские вопросы, требующие многоэтапных рассуждений. В отличие от традиционных RAG-систем, i-MedRAG использует итеративный подход к поиску информации.

Методики и техники

🟦 Автоматическая сегментация клеток с использованием UNet в DeepChem.


В статье описан эксперимент создания​​ интеграции модели UNet, архитектуры, известной своей эффективностью в задачах сегментации изображений, с python библиотекой DeepChem, предназначенной для машинного и глубокого обучения в биологии и химии, для задач автоматической сегментации клеток на различных наборах данных микроскопических изображений.

🔥Полный дайджест

@ai_machinelearning_big_data

#news #ai #ml #medtech
🔥27👍127🤔21
🌟 LLaMA-Factory: локальный файнтюн моделей с WebUI.

LLaMA-Factory - это фреймворк, который объединяет в себе набор методов манипуляций с моделями и инструментов для гибкой настройки через веб-интерфейс Gradio.

Фреймворк состоит из трех основных модулей:

🟢Model Loader - управляет архитектурами моделей, поддерживая LLM и VLM;

🟢Data Worker - модуль для операций с наборами данных;

🟢Trainer - применяет подходы к обучению: Pre-Training, SFT, Reward Modeling, PPO, DPO, KTO, ORPO, SimPO.

LLaMA-Factory поддерживает методы: freeze-tuning, GaLore, BAdam, LoRA, QLoRA, DORA, LORA+ и PiSSA, а также flash attention, S2 attention, mixed precision training, activation checkpointing и стратегии квантования.

Список поддерживаемых семейств моделей периодически пополняется, его актуальную версию можно посмотреть в репозитории проекта.

Gradio WebUi позволяет настраивать аргументы обучения, визуализировать журналы обучения и кривые потерь в режиме реального времени, а также поддерживает несколько языков: английский, русский и китайский.

На потребительских GPU (24Gb), согласно таблице разработчиков, запустятся методы:

🟠Freeze 16-bit - модели плотностью 7B;

🟠LoRA/GaLore/BAdam 16-bit - модели плотностью 7B;

🟠QLoRA 8-bit - модели плотностью 7B, 13B;

🟠QLoRA 4-bit - модели плотностью 7B, 13B, 30B;

🟠QLoRA 2-bit - модели плотностью 7B, 13B, 30B и 70B.

⚠️ Перед локальным запуском внимательно ознакомьтесь с требованиями по пакетному окружению, рекомендациями по установке для разных архитектур, инструкцией по подготовке данных.

▶️ Проект может быть инсталлирован : Docker, Docker w\o Composer, OpenAI-style API and vLLM и классическим способом установки из репозитория.


📌Лицензирование : Apache 2.0 License.


🟡Документация (китайский)
🟡Google Collab
🟡Arxiv
🟡Demo
🟡Сообщество в Discord
🖥Github


@ai_machinelearning_big_data

#AI #ML #LLM #Finetune #LlaMAFactory
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21👍1552😈1
🖥 Awesome LLM Strawberry (OpenAI o1)

Свежий Awesome список статей, блогов и LLM проектов, посвящённых OpenAI o1 и техникам рассуждений модели.

Github

@ai_machinelearning_big_data

#opeai #chatgpto1 #awesome
Please open Telegram to view this post
VIEW IN TELEGRAM
👍256🔥4
Новостной дайджест

✔️ CEO Hasbro заявил, что искусственный интеллект станет основной частью Dungeons & Dragons.

Генеральный директор Hasbro, материнской компании Wizards of the Coast, Крис Кокс заявил, что ИИ уже используется для разработки игр и в будущем станет неотъемлемой частью Dungeons & Dragons, например, для создания пользовательского контента и сценариев.

Это заявление вызвало волну критики в сообществе D&D, поскольку ранее Wizards of the Coast запрещала своим художникам использовать ИИ.
uk.news.yahoo.com

✔️ Китайский конкурент Nvidia, компания Biren Technology, планирует выход на IPO.

Biren Technology, получившая статус "единорога" (стартапа с оценкой более $1 млрд) в ноябре 2023 года, наняла инвестиционный банк Guotai Junan Securities, чтобы пройти обязательный в Китае процесс "обучения", который является предшественником подачи заявки на IPO. Процесс занимает от 3 до 12 месяцев, включает в себя подготовку руководства компании к IPO.
scmp.com


✔️ AMD подтвердила, что FSR4 будет использовать ИИ для повышения качества изображения и энергоэффективности.

AMD подтвердила, что следующая версия технологии масштабирования изображения FidelityFX Super Resolution (FSR), FSR4, будет использовать искусственный интеллект для генерации кадров.

Самой большой проблемой, с которой сталкиваются портативные игровые устройства, является время автономной работы, и в генерации кадров лежит одно из возможных решений этой проблемы.

Идея заключается в том, что генерация интерполированных кадров требует гораздо меньше вычислительных ресурсов, чем полная отрисовка этих кадров, поэтому можно зафиксировать частоту кадров на относительно низком уровне, например, "30 или 35", а затем использовать генерацию кадров, чтобы сделать изображение плавным, экономя при этом энергию.

FSR4 будет доступен не только на портативных игровых устройствах и может стать отличной функцией для будущих дискретных графических процессоров AMD на базе RDNA 4. AMD начала работу над решением для генерации кадров на основе ИИ "9-12 месяцев назад", поэтому FSR4 может быть готов к запуску новых видеокарт AMD, который ожидается примерно в январе, на выставке CES 2025.
hothardware.com

✔️ ОАЭ представили новую политику безопасности в области ИИ.

Центр электронной безопасности Дубая (DESC) объявил о запуске политики безопасности искусственного интеллекта Дубая, чтобы укрепить доверие к решениям ИИ, способствовать их развитию и снизить риски безопасности.

Эта инициатива является частью стремления ОАЭ стать мировым лидером в области ИИ к 2031 году, разрабатывая интегрированную государственную систему, использующую ИИ в ключевых секторах. Запуск политики соответствует целям программы Dubai Economic Agenda , направленной на удвоение экономики Дубая в течение следующего десятилетия.
wam.ae

✔️ Италия тестирует обучение с помощью ИИ в школах.

Правительство Италии запускает пилотный проект по внедрению ИИ в школах, чтобы помочь сократить отставание страны в области цифровых навыков от других стран ЕС.

В рамках проекта, ПО с поддержкой ИИ будет протестировано в 15 классах в четырех регионах. Инструменты ИИ на планшетах и компьютерах в классах будут действовать как "виртуальные ассистенты, которые могут облегчить обучение для учеников и помочь учителям определить методы для индивидуального образования".

Италия имеет один из самых низких показателей базовых цифровых навыков в ЕС, уступая только Латвии, Польше, Болгарии и Румынии. Министр образования Джузеппе Вальдитара считает, что ИИ может помочь улучшить ситуацию, предоставляя учащимся более персонализированный и эффективный образовательный опыт.

В то же время, министр ввел полный запрет на использование мобильных телефонов в классах, даже в образовательных целях. Проект по внедрению ИИ в школах будет оцениваться в течение учебного года, и, если он окажется успешным, его планируется расширить.
kfgo.com


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍2012🔥6🤬2🥰1
⚡️ XVERSE-MoE-A36B: большая языковая модель на архитектуре MoE.

XVERSE-MoE-A36 - мультиязычная LLM, разработанная с нуля Shenzhen Yuanxiang Technology. Модель основана на архитектуре Mixture-of-Experts, имеет 255 млрд. параметров, из которых 36 млрд. активируются в процессе работы.

XVERSE-MoE-A36B предназначена для решения задач: генерация текста, машинный перевод, анализ тональности, реферирование текста, вопрос-ответ, применение в интеллектуальных системах обслуживания клиентов, образовательных помощниках и анализе данных.

Модель использует структуру decoder-only Transformer, где слой Feedforward Network разделен на специализированные экспертные слои.

Отличительной особенностью модели является использование набора общих и не общих экспертов, каждый из которых составляет 1/4 от размера стандартного FFN. Общие эксперты всегда активны во время вычислений, а не общие - активируются выборочно маршрутизатором.

Для обучения модели использовался массив данных на 40 языках, включая китайский, английский, русский и испанский. В процессе обучения использовалась стратегия динамического изменения набора данных с изменением скорости обучения (LR).

Тестирование модели проводилось на наборах данных MMLU, C-Eval, CMMLU, RACE-M, PIQA, GSM8K, MATH, MBPP и HumanEval.

Результаты показывают, что XVERSE-MoE-A36B превосходит другие модели MoE с открытым исходным кодом по производительности и эффективности.

▶️ Технические параметры модели:

🟢total parameters: 255.4B;
🟢active parameters: 36.5B;
🟢total layers: 50;
🟢dimensionality: 6144;
🟢attention heads: 48;
🟢feed-forward dimensionality: 4096;
🟢non-shared experts: 64;
🟢shared experts: 2;
🟢top-k sampling: 6.

⚠️ Важно! Несмотря на название, модель - 255B, ее физический размер ~ 512 Gb

▶️Установка и запуск:

# Clone repository:
git clone https://github.com/xverse-ai/XVERSE-MoE-A36B
cd XVERSE-MoE-A36B

# Install the dependencies:
pip install -r requirements.txt

# Inference with Transformers:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("xverse/XVERSE-MoE-A36B")
model = AutoModelForCausalLM.from_pretrained("xverse/XVERSE-MoE-A36B", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
inputs = tokenizer('Attraction of Omsk: The Forbidden City', return_tensors='pt').input_ids
inputs = inputs.cuda()
generated_ids = model.generate(inputs, max_new_tokens=70, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.1)
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))

# Inference with WebUI:
python chat_demo.py --port='port' --model_path='/path/to/model/' --tokenizer_path='/path/to/tokenizer/'


📌Лицензирование : Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Demo (Chinese)
🖥Github


@ai_machinelearning_big_data

#AI #ML #MoE #LLM #XVERSE
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍9🔥5🥱2
🌟 Специалисты ИТМО представили результаты исследования Open Source решений в сфере ML/Data в России

Лидирующие позиции заняли Яндекс, Сбер и Т-банк. Исследование выявило, что разработчики ориентируются как на внутренний, так и на международный рынок. Также компании рассматривают open-source как способ развития отрасли.

Лидер рейтинга Яндекс представил 120 открытых решений. Среди них выделен топ-3:

🟢CatBoost: библиотека градиентного бустинга на дереве решений.

🟢YTsaurus: платформа для хранения и обработки больших данных.

🟢YDB: распределённая SQL база данных.

📌В список открытых решений попали и последние проекты компании: YaFSDP (Библиотека для ускорения обучения больших языковых моделей), Gravity UI (Набор библиотек и компонент для создания интерфейсов), Diplodoc (Платформа для написания технической документации), DataLens (платформа для визуализации и аналитики данных), а также ClickHouse, который развивается независимо.

🟡Исследование

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍248🔥5
⚡️ Nemotron-Mini-4B-Instruct: инструктивная компактная модель от Nvidia

Nemotron-Mini-4B-Instruct - небольшая модель, полученная в результате файнтюна, обрезки (pruning), дистилляции и квантования модели Minitron-4B-Base.

Эта модель оптимизирована для roleplay-сценариев, RAG QA и вызова функций на английском языке.

Практическое применение модели ориентировано на интеграции в гейм-разработке, преимущественно - в экосистеме NVIDIA.

Модель обучалась в период февраль-август 2024 года.

При создании Nemotron-Mini-4B-Instruct использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).

▶️Технические характеристики:

🟢total params - 4B;
🟢embedding size - 3072;
🟢attention heads - 32;
🟢MLP intermediate dimension - 9216;
🟢input context - 4096.

Пример инференса в Transformers, шаблоны простого промпта и instruct- шаблон в карточке модели на Huggingface.

Есть неофициальные квантованные (imatrix) GGUF - версии модели в 8 разрядностях, от 3-bit (2.18 Gb) до 16-bit (8.39 Gb) для запуска в llama.cpp и LM Studio.


📌Лицензирование : NVIDIA Community Model License.


🟡Страница модели на NGC Catalog
🟡Модель
🟡GGUF
🟡Arxiv
🟡Demo


@ai_machinelearning_big_data

#AI #NVIDIA #LLM #ML #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
👍217🥰2
🌟 multi1: Имитация GPT-o1-подобных цепочек рассуждений с локальными и онлайн LLM.

multi1 — это экспериментальный проект, вдохновленный моделью o1 от OpenAI, который позволяет использовать различные языковые модели: локальные (через ollama) и онлайн (Perplexity и Groq) через единый веб-интерфейс.

Цель проекта — изучение возможностей повышения способности языковых моделей к логическому мышлению путём применения стратегий промптинга.

Архитектура multi1 основана на использовании цепочек рассуждений, реализующих принцип динамической "Цепочки Мыслей" (Chain of Thought).

В отличие от o1, multi1 визуализирует все этапы рассуждений, предоставляя пользователю доступ к каждому шагу и позволяя наблюдать за логикой.

Тестирование показало, что multi1 способен решать простые логические задачи, которые обычно вызывают затруднения у LLM, с точностью 60-80%.

Например, multi1 достигает точности ~70% в популярном запросе "Сколько букв 'R' в слове 'strawberry'?" (n=10). Для сравнения, Llama-3.1-70b без промтинга показала 0% точности, а ChatGPT-4o - 30%.

▶️Установка и запуск:

# Set up the environment:
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt

# Copy the example environment file:
cp example.env .env

# Edit the .env file with your API keys / models preferences

# Run the streamlit UI interface
streamlit run app/main.py


📌Лицензирование : MIT License.


🖥Github


@ai_machinelearning_big_data

#AI #ML #o1 #LLM #CoT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
23👍19🔥7😁3
🌟 SaRA: эффективный файнтюн диффузионных моделей с помощью разреженной низкоранговой адаптации.

Sparse Low Rank Adaptation (SaRA) - метод дополнительного обучения для диффузионных моделей, который использует "неэффективные" параметры с наименьшими абсолютными значениями в предобученной модели.

SaRA позволяет улучшить генеративные способности модели, адаптируя ее к новым задачам, сохраняя при этом обобщающие способности исходной модели. SaRA отличается простотой реализации, требуя модификации всего одной строки кода в исходном скрипте обучения.

Идея метода о том, что параметры модели с наименьшими абсолютными значениями, хотя и не оказывают существенного влияния на инференс модели, обладают потенциалом для обучения новым знаниям. Потенциал обусловлен не структурными ограничениями модели, а скорее случайностью процесса оптимизации во время обучения.

Чтобы предотвратить переобучение, которое может возникнуть из-за сильной способности к представлению разреженных матриц, в SaRA используется функция потерь на основе ядерной нормы (nuclear norm-based) для ограничения ранга обучаемых матриц.

Для более плотного использования "неэффективных" параметров, используется прогрессивная стратегия настройки параметров процесса файнтюна - на более поздних этапах обучения происходит повторный выбор "неэффективных" параметров для повышения адаптивности модели.

Для решения проблемы высокого потребления VRAM, характерной для методов selective PEFT, SaRA использует алгоритм «неструктурного обратного распространения ошибки». Этот алгоритм хранит и обновляет градиенты только для обучаемых параметров, значительно сокращая использование памяти во время обучения.

Проведенные эксперименты на моделях Stable Diffusion (14, 1.5, 2.0, 3.0) демонстрируют эффективность SaRA в сравнении с другими методами файнтюна:

🟢LoRA: экономия 52% VRAM;

🟢LT-SFT: экономия 45% VRAM.

⚠️ Метод был успешно протестирован на venv : Python 3.9.5 и CUDA 11.8. Подробный туториал разработчик обещает выложить в репозиторий на Github до 30 сентября 2024 г.

В планах проекта - поддержка Dreambooth и Animatediff. Сроки по реализации планов не уточняются.

▶️Использование SaRA :

# easily employ SaRA to finetune the model by modifying a single line of code:
from optim import adamw
model = Initialize_model()
optimizer = adamw(model,threshold=2e-3) # <-modify this line only
for data in dataloader:
model.train()
model.save()

# Save and load only the trainable parameters
optimizer = adamw(model,threshold=2e-3)
optimizer.load($path_to_save)
torch.save(optimizer.save_params(),$path_to_save)



🟡Страница проекта
🟡Arxiv
🖥Github


@ai_machinelearning_big_data

#AI #ML #Finetuning #Diffusers #SaRA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍127🔥4👏3