Practical_Statistics_for_Data_Scientists,_2nd_Edition_50+_Essential.pdf
16 MB
📚 معرفی کتاب:
قسمت بیستم
Practical Statistics for Data Scientists
نویسندگان:
Peter Bruce & Andrew Bruce
📊 سطح: پیشرفته
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● آموزش آمار با رویکرد کاملاً عملی و پروژهمحور
● تأکید بر کاربرد مفاهیم آماری در یادگیری ماشین
● ارائه مثالهای واقعی با استفاده از کتابخانههای مدرن پایتون
✨ آنچه این کتاب را خاص میکند:
● تبدیل تئوریهای آماری به راهکارهای عملی برای علم داده
● مناسب برای دانشمندان داده، تحلیلگران و مهندسان ML
● تمرکز بر درک نتایج و تفسیر خروجی مدلها به جای فرمولهای نظری
📖 سرفصلهای کلیدی:
● اکتشاف و مصورسازی دادهها
● آزمون فرضیه (Statistical hypothesis test) و بازه اطمینان
● رگرسیون و پیشبینی (Prediction)
● طبقهبندی (Classification) و یادگیری ماشین
● اعتبارسنجی و ارزیابی مدل
📌 منبع:
🔘 O'Reilly
#️⃣ #آمار_کاربردی #علم_داده #هوش_مصنوعی #یادگیری_ماشین #کتاب_بیستم
#PracticalStatistics #DataScience #AI #MachineLearning
🌐 @PyVision
قسمت بیستم
Practical Statistics for Data Scientists
نویسندگان:
Peter Bruce & Andrew Bruce
📊 سطح: پیشرفته
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● آموزش آمار با رویکرد کاملاً عملی و پروژهمحور
● تأکید بر کاربرد مفاهیم آماری در یادگیری ماشین
● ارائه مثالهای واقعی با استفاده از کتابخانههای مدرن پایتون
✨ آنچه این کتاب را خاص میکند:
● تبدیل تئوریهای آماری به راهکارهای عملی برای علم داده
● مناسب برای دانشمندان داده، تحلیلگران و مهندسان ML
● تمرکز بر درک نتایج و تفسیر خروجی مدلها به جای فرمولهای نظری
📖 سرفصلهای کلیدی:
● اکتشاف و مصورسازی دادهها
● آزمون فرضیه (Statistical hypothesis test) و بازه اطمینان
● رگرسیون و پیشبینی (Prediction)
● طبقهبندی (Classification) و یادگیری ماشین
● اعتبارسنجی و ارزیابی مدل
📌 منبع:
🔘 O'Reilly
#️⃣ #آمار_کاربردی #علم_داده #هوش_مصنوعی #یادگیری_ماشین #کتاب_بیستم
#PracticalStatistics #DataScience #AI #MachineLearning
🌐 @PyVision
🔥3
PyVision | پایویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله. این سیستمها بهجای پیروی از دستورهای…
📘 یادگیری عمیق (Deep Learning) چیست؟
یادگیری عمیق یکی از زیرمجموعههای یادگیری ماشین و در نتیجه هوش مصنوعی است که از شبکههای عصبی چندلایه الهامگرفته از مغز انسان استفاده میکند.
در این روش، سیستم میتواند ویژگیها و الگوهای پیچیده را بهصورت خودکار از دادههای خام (مثل تصویر، صدا یا متن) استخراج کند. 🧠🤖
به زبان ساده:
اگر یادگیری ماشین «یاد گرفتن از دادهها» باشد،
یادگیری عمیق یعنی یاد گرفتن عمیقتر، دقیقتر و در مقیاس بزرگتر.
🔹 چرا یادگیری عمیق مهم است؟
● حجم دادهها بسیار زیاد باشد
● الگوها پیچیده باشند
● دادهها غیرساختاریافته باشند (تصویر، ویدئو، صدا، متن)
به همین دلیل، بسیاری از پیشرفتهای بزرگ هوش مصنوعی در سالهای اخیر، مدیون Deep Learning هستند.
🔹 نمونه کاربردهای یادگیری عمیق
⚪️ بینایی ماشین (Computer Vision)
● تشخیص چهره
● شناسایی اشیاء در تصاویر
● تحلیل تصاویر پزشکی
⚪️ پردازش گفتار و زبان (Speech & NLP)
● تبدیل گفتار به متن
● ترجمه ماشینی
● چتباتها و مدلهای زبانی
⚪️ سیستمهای هوشمند
● خودروهای خودران
● سیستمهای توصیهگر پیشرفته
● تشخیص تقلب و الگوهای غیرعادی
✨ یادگیری عمیق قلب بسیاری از فناوریهای هوشمند امروزی است و بدون آن، پیشرفتهایی مثل تشخیص چهره، دستیارهای صوتی و مدلهای زبانی ممکن نبود.
✅️ در پستهای بعدی، بهصورت جداگانه معماریهای مهم یادگیری عمیق و کاربردهای واقعی آنها را بررسی میکنیم.
📌 منابع:
🔘 IBM — Deep Learning Overview
🔘 MIT — Deep Learning Basics
#️⃣ #یادگیری_عمیق #هوش_مصنوعی #یادگیری_ماشین #فناوری #پای_ویژن
#DeepLearning #ArtificialIntelligence #MachineLearning #AI
🌐 @PyVision
یادگیری عمیق یکی از زیرمجموعههای یادگیری ماشین و در نتیجه هوش مصنوعی است که از شبکههای عصبی چندلایه الهامگرفته از مغز انسان استفاده میکند.
در این روش، سیستم میتواند ویژگیها و الگوهای پیچیده را بهصورت خودکار از دادههای خام (مثل تصویر، صدا یا متن) استخراج کند. 🧠🤖
به زبان ساده:
اگر یادگیری ماشین «یاد گرفتن از دادهها» باشد،
یادگیری عمیق یعنی یاد گرفتن عمیقتر، دقیقتر و در مقیاس بزرگتر.
🔹 چرا یادگیری عمیق مهم است؟
● حجم دادهها بسیار زیاد باشد
● الگوها پیچیده باشند
● دادهها غیرساختاریافته باشند (تصویر، ویدئو، صدا، متن)
به همین دلیل، بسیاری از پیشرفتهای بزرگ هوش مصنوعی در سالهای اخیر، مدیون Deep Learning هستند.
🔹 نمونه کاربردهای یادگیری عمیق
⚪️ بینایی ماشین (Computer Vision)
● تشخیص چهره
● شناسایی اشیاء در تصاویر
● تحلیل تصاویر پزشکی
⚪️ پردازش گفتار و زبان (Speech & NLP)
● تبدیل گفتار به متن
● ترجمه ماشینی
● چتباتها و مدلهای زبانی
⚪️ سیستمهای هوشمند
● خودروهای خودران
● سیستمهای توصیهگر پیشرفته
● تشخیص تقلب و الگوهای غیرعادی
✨ یادگیری عمیق قلب بسیاری از فناوریهای هوشمند امروزی است و بدون آن، پیشرفتهایی مثل تشخیص چهره، دستیارهای صوتی و مدلهای زبانی ممکن نبود.
✅️ در پستهای بعدی، بهصورت جداگانه معماریهای مهم یادگیری عمیق و کاربردهای واقعی آنها را بررسی میکنیم.
📌 منابع:
🔘 IBM — Deep Learning Overview
🔘 MIT — Deep Learning Basics
#️⃣ #یادگیری_عمیق #هوش_مصنوعی #یادگیری_ماشین #فناوری #پای_ویژن
#DeepLearning #ArtificialIntelligence #MachineLearning #AI
🌐 @PyVision
👌3
PyVision | پایویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله. این سیستمها بهجای پیروی از دستورهای…
📘 پردازش زبان طبیعی (Natural Language Processing | NLP) چیست؟
پردازش زبان طبیعی یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا زبان انسان (متن و گفتار) را درک کنند، تحلیل کنند و پاسخ مناسب تولید کنند.
هدف NLP این است که ارتباط بین انسان و ماشین تا حد ممکن طبیعی و شبیه گفتوگوی انسانی شود. 💬🤖
به زبان ساده:
پردازش زبان طبیعی (NLP) به کامپیوتر یاد میدهد بفهمد ما چه میگوییم و چه مینویسیم.
🔹پردازش زبان طبیعی دقیقاً چه کارهایی انجام میدهد؟
● درک معنای متن
● تحلیل ساختار جملات
● تشخیص احساسات و نیت کاربران
● تولید متن یا پاسخ هوشمند
● پردازش گفتار انسان
🔹 نمونه کاربردهای پردازش زبان طبیعی
⚪️ تحلیل متن (Text Analysis)
● تحلیل احساسات (مثبت، منفی، خنثی)
● دستهبندی متون
● استخراج کلمات کلیدی
⚪️ پردازش گفتار (Speech Processing)
● تبدیل گفتار به متن (Speech to Text)
● تبدیل متن به گفتار (Text to Speech)
⚪️ سیستمهای مکالمهای
● چتباتها
● دستیارهای هوشمند
● پاسخگویی خودکار به کاربران
⚪️ ترجمه و تولید زبان
● ترجمه ماشینی
● خلاصهسازی متن
● تولید متن هوشمند
✨ پردازش زبان طبیعی یکی از پرکاربردترین شاخههای هوش مصنوعی است و نقش کلیدی در موتورهای جستجو، شبکههای اجتماعی، پشتیبانی آنلاین و ابزارهای هوشمند دارد.
✅️ در پستهای بعدی، اجزای اصلی NLP و کاربردهای واقعی آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Natural Language Processing
🔘 Stanford University — Speech and Language Processing
🔘 Google — Natural Language Understanding
#️⃣ #پردازش_زبان_طبیعی #هوش_مصنوعی #یادگیری_ماشین #فناوری
#NLP #ArtificialIntelligence #MachineLearning #AI #PyVision
🌐 @PyVision
پردازش زبان طبیعی یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا زبان انسان (متن و گفتار) را درک کنند، تحلیل کنند و پاسخ مناسب تولید کنند.
هدف NLP این است که ارتباط بین انسان و ماشین تا حد ممکن طبیعی و شبیه گفتوگوی انسانی شود. 💬🤖
به زبان ساده:
پردازش زبان طبیعی (NLP) به کامپیوتر یاد میدهد بفهمد ما چه میگوییم و چه مینویسیم.
🔹پردازش زبان طبیعی دقیقاً چه کارهایی انجام میدهد؟
● درک معنای متن
● تحلیل ساختار جملات
● تشخیص احساسات و نیت کاربران
● تولید متن یا پاسخ هوشمند
● پردازش گفتار انسان
🔹 نمونه کاربردهای پردازش زبان طبیعی
⚪️ تحلیل متن (Text Analysis)
● تحلیل احساسات (مثبت، منفی، خنثی)
● دستهبندی متون
● استخراج کلمات کلیدی
⚪️ پردازش گفتار (Speech Processing)
● تبدیل گفتار به متن (Speech to Text)
● تبدیل متن به گفتار (Text to Speech)
⚪️ سیستمهای مکالمهای
● چتباتها
● دستیارهای هوشمند
● پاسخگویی خودکار به کاربران
⚪️ ترجمه و تولید زبان
● ترجمه ماشینی
● خلاصهسازی متن
● تولید متن هوشمند
✨ پردازش زبان طبیعی یکی از پرکاربردترین شاخههای هوش مصنوعی است و نقش کلیدی در موتورهای جستجو، شبکههای اجتماعی، پشتیبانی آنلاین و ابزارهای هوشمند دارد.
✅️ در پستهای بعدی، اجزای اصلی NLP و کاربردهای واقعی آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Natural Language Processing
🔘 Stanford University — Speech and Language Processing
🔘 Google — Natural Language Understanding
#️⃣ #پردازش_زبان_طبیعی #هوش_مصنوعی #یادگیری_ماشین #فناوری
#NLP #ArtificialIntelligence #MachineLearning #AI #PyVision
🌐 @PyVision
🔥1👌1
PyVision | پایویژن
📘 یادگیری ماشین (Machine Learning) چیست؟ یادگیری ماشین یکی از مهمترین زیرمجموعههای هوش مصنوعی است که به سیستمها این توانایی را میدهد تا از دادهها یاد بگیرند و بدون برنامهنویسی صریح برای هر حالت، عملکرد خود را بهمرور بهبود دهند. به بیان ساده، بهجای…
📘 ۱۰ اصطلاح پایه و مهم در یادگیری ماشین (Machine Learning)
قسمت اول
1️⃣ Machine Learning
یادگیری سیستمها از دادهها بدون برنامهنویسی مستقیم
2️⃣ Dataset
مجموعه دادههای مورد استفاده برای آموزش و ارزیابی مدل
3️⃣ Feature
ویژگیها یا متغیرهای ورودی داده
4️⃣ Label
خروجی یا پاسخ صحیح دادهها
5️⃣ Model
نمایش ریاضی الگوهای موجود در داده
6️⃣ Algorithm
روش یا دستورالعمل یادگیری الگو از داده
7️⃣ Training Data
دادههایی که مدل با آنها آموزش میبیند
8️⃣ Test Data
دادههایی برای سنجش عملکرد نهایی مدل
9️⃣ Supervised Learning
یادگیری با دادههای برچسبدار
🔟 Unsupervised Learning
یادگیری از دادههای بدون برچسب
✨ آشنایی با این مفاهیم، اولین گام ورود به دنیای یادگیری ماشین است.
📌 منابع:
🔘 Google
🔘 Scikit-learn
🔘 Stanford
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #آموزش_ماشین
#MachineLearning #AI #DataScience #MLBasics
🌐 @PyVision
قسمت اول
1️⃣ Machine Learning
یادگیری سیستمها از دادهها بدون برنامهنویسی مستقیم
2️⃣ Dataset
مجموعه دادههای مورد استفاده برای آموزش و ارزیابی مدل
3️⃣ Feature
ویژگیها یا متغیرهای ورودی داده
4️⃣ Label
خروجی یا پاسخ صحیح دادهها
5️⃣ Model
نمایش ریاضی الگوهای موجود در داده
6️⃣ Algorithm
روش یا دستورالعمل یادگیری الگو از داده
7️⃣ Training Data
دادههایی که مدل با آنها آموزش میبیند
8️⃣ Test Data
دادههایی برای سنجش عملکرد نهایی مدل
9️⃣ Supervised Learning
یادگیری با دادههای برچسبدار
🔟 Unsupervised Learning
یادگیری از دادههای بدون برچسب
✨ آشنایی با این مفاهیم، اولین گام ورود به دنیای یادگیری ماشین است.
📌 منابع:
🔘 Scikit-learn
🔘 Stanford
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #علم_داده #آموزش_ماشین
#MachineLearning #AI #DataScience #MLBasics
🌐 @PyVision
👌2
PyVision | پایویژن
📘 یادگیری ماشین (Machine Learning) چیست؟ یادگیری ماشین یکی از مهمترین زیرمجموعههای هوش مصنوعی است که به سیستمها این توانایی را میدهد تا از دادهها یاد بگیرند و بدون برنامهنویسی صریح برای هر حالت، عملکرد خود را بهمرور بهبود دهند. به بیان ساده، بهجای…
📘 وقتی میگوییم «یادگیری ماشین» یعنی چه؟
(به زبان بسیار ساده)
وقتی میگوییم یادگیری ماشین (Machine Learning)، منظور این است که:
❝ بهجای اینکه تمام قوانین را خودمان به کامپیوتر بگوییم،
به آن داده میدهیم تا خودش الگوها را یاد بگیرد و تصمیم بگیرد. ❞
یعنی ماشین تجربه کسب میکند، درست بسان انسان.
مثال: پیشنهاد فیلم در نتفلیکس 🎬
فرض کنید:
● شما چند فیلم اکشن را کامل تماشا میکنید
● فیلمهای عاشقانه را نیمهکاره رها میکنید
❌ نتفلیکس بهصورت دستی برنامهنویسی نشده که:
«اگر فلان کاربر، فلان فیلم را دید، این فیلم را پیشنهاد بده»
✅ بلکه این اتفاق میافتد:
1️⃣ رفتار شما (تماشا، توقف، امتیاز دادن) بهعنوان داده ذخیره میشود
2️⃣ الگوریتم یادگیری ماشین این دادهها را بررسی میکند
3️⃣ الگو را یاد میگیرد:
«این کاربر به فیلمهای اکشن علاقه دارد»
4️⃣ در آینده، فیلمهای مشابه را پیشنهاد میدهد
✳️ هرچه دادهی بیشتری از شما ببیند، پیشنهادها دقیقتر میشوند
● این یعنی یادگیری از تجربه
● این یعنی یادگیری ماشین
🧩 مثال سادهتر (غیر دیجیتالی)
👶 یاد گرفتن تشخیص حیوانات
کودکی را تصور کنید که:
● چند بار به او نشان میدهیم و میگوییم: «این گربه است»
● چند بار دیگر: «این سگ است»
بعد از مدتی:
● خودش بدون کمک میگوید: «این گربه است»
■ کودک قانون دقیق ننوشته
■ فقط با دیدن مثالها الگو را یاد گرفته
🤖 یادگیری ماشین دقیقاً همین کار را با دادهها انجام میدهد.
● برنامهنویسی سنتی:
قانون + داده → نتیجه
● یادگیری ماشین:
داده + نتیجه → یاد گرفتن قانون
به همین دلیل است که یادگیری ماشین در مسائلی بسان تصویر، صدا، متن و رفتار انسان فوقالعاده موفق است.
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #برنامه_نویسی #پای_ویژن
#MachineLearning #ArtificialIntelligence #AI
🌐 @PyVision
(به زبان بسیار ساده)
وقتی میگوییم یادگیری ماشین (Machine Learning)، منظور این است که:
❝ بهجای اینکه تمام قوانین را خودمان به کامپیوتر بگوییم،
به آن داده میدهیم تا خودش الگوها را یاد بگیرد و تصمیم بگیرد. ❞
یعنی ماشین تجربه کسب میکند، درست بسان انسان.
مثال: پیشنهاد فیلم در نتفلیکس 🎬
فرض کنید:
● شما چند فیلم اکشن را کامل تماشا میکنید
● فیلمهای عاشقانه را نیمهکاره رها میکنید
❌ نتفلیکس بهصورت دستی برنامهنویسی نشده که:
«اگر فلان کاربر، فلان فیلم را دید، این فیلم را پیشنهاد بده»
✅ بلکه این اتفاق میافتد:
1️⃣ رفتار شما (تماشا، توقف، امتیاز دادن) بهعنوان داده ذخیره میشود
2️⃣ الگوریتم یادگیری ماشین این دادهها را بررسی میکند
3️⃣ الگو را یاد میگیرد:
«این کاربر به فیلمهای اکشن علاقه دارد»
4️⃣ در آینده، فیلمهای مشابه را پیشنهاد میدهد
✳️ هرچه دادهی بیشتری از شما ببیند، پیشنهادها دقیقتر میشوند
● این یعنی یادگیری از تجربه
● این یعنی یادگیری ماشین
🧩 مثال سادهتر (غیر دیجیتالی)
👶 یاد گرفتن تشخیص حیوانات
کودکی را تصور کنید که:
● چند بار به او نشان میدهیم و میگوییم: «این گربه است»
● چند بار دیگر: «این سگ است»
بعد از مدتی:
● خودش بدون کمک میگوید: «این گربه است»
■ کودک قانون دقیق ننوشته
■ فقط با دیدن مثالها الگو را یاد گرفته
🤖 یادگیری ماشین دقیقاً همین کار را با دادهها انجام میدهد.
● برنامهنویسی سنتی:
قانون + داده → نتیجه
● یادگیری ماشین:
داده + نتیجه → یاد گرفتن قانون
به همین دلیل است که یادگیری ماشین در مسائلی بسان تصویر، صدا، متن و رفتار انسان فوقالعاده موفق است.
#️⃣ #یادگیری_ماشین #هوش_مصنوعی #برنامه_نویسی #پای_ویژن
#MachineLearning #ArtificialIntelligence #AI
🌐 @PyVision
👌2
PyVision | پایویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله. این سیستمها بهجای پیروی از دستورهای…
📘 بینایی ماشین (Computer Vision) چیست؟
بینایی ماشین یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا تصاویر و ویدئوها را ببینند، تحلیل کنند و درک کنند؛
تقریباً شبیه کاری که چشم و مغز انسان انجام میدهد.
به زبان ساده:
بینایی ماشین یعنی کامپیوتر بتواند از روی تصویر یا ویدئو بفهمد چه چیزی در آن وجود دارد.👁️🤖
🔹 بینایی ماشین چگونه کار میکند؟(به زبان ساده)
1️⃣ تصویر یا ویدئو بهعنوان داده وارد سیستم میشود
2️⃣ مدلهای یادگیری ماشین (معمولاً یادگیری عمیق) الگوهای تصویری را استخراج میکنند
3️⃣ سیستم اشیاء، چهرهها، متن یا حرکات را تشخیص میدهد
4️⃣ بر اساس این درک، تصمیم یا پیشبینی انجام میشود
⚪️ امروزه بیشتر سیستمهای بینایی ماشین بر پایهی شبکههای عصبی عمیق ساخته میشوند.
🔹 نمونه کاربردهای بینایی ماشین
⚪️ تشخیص چهره
● باز کردن قفل گوشی
● سیستمهای احراز هویت
⚪️ شناسایی اشیاء (Object Detection)
● خودروهای خودران
● تحلیل تصاویر دوربینهای شهری
⚪️ پردازش تصاویر پزشکی
● تشخیص تومور
● تحلیل تصاویر MRI و X-ray
⚪️ بینایی صنعتی و تجاری
● کنترل کیفیت در کارخانهها
● اسکن بارکد و تشخیص کالا
✨ بینایی ماشین یکی از ستونهای اصلی فناوریهای هوشمند امروزی است و بدون آن، بسیاری از پیشرفتها در پزشکی، حملونقل و امنیت ممکن نبود.
✅️ در پستهای بعدی، مفاهیم کلیدی بینایی ماشین و نقش یادگیری عمیق در آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Computer Vision
🔘 Stanford University
🔘 MIT — Computer Vision Overview
#️⃣ #بینایی_ماشین #هوش_مصنوعی #یادگیری_عمیق #فناوری #پای_ویژن
#ComputerVision #ArtificialIntelligence #DeepLearning #AI
🌐 @PyVision
بینایی ماشین یکی از زیرمجموعههای مهم هوش مصنوعی است که به سیستمها این توانایی را میدهد تا تصاویر و ویدئوها را ببینند، تحلیل کنند و درک کنند؛
تقریباً شبیه کاری که چشم و مغز انسان انجام میدهد.
به زبان ساده:
بینایی ماشین یعنی کامپیوتر بتواند از روی تصویر یا ویدئو بفهمد چه چیزی در آن وجود دارد.👁️🤖
🔹 بینایی ماشین چگونه کار میکند؟(به زبان ساده)
1️⃣ تصویر یا ویدئو بهعنوان داده وارد سیستم میشود
2️⃣ مدلهای یادگیری ماشین (معمولاً یادگیری عمیق) الگوهای تصویری را استخراج میکنند
3️⃣ سیستم اشیاء، چهرهها، متن یا حرکات را تشخیص میدهد
4️⃣ بر اساس این درک، تصمیم یا پیشبینی انجام میشود
⚪️ امروزه بیشتر سیستمهای بینایی ماشین بر پایهی شبکههای عصبی عمیق ساخته میشوند.
🔹 نمونه کاربردهای بینایی ماشین
⚪️ تشخیص چهره
● باز کردن قفل گوشی
● سیستمهای احراز هویت
⚪️ شناسایی اشیاء (Object Detection)
● خودروهای خودران
● تحلیل تصاویر دوربینهای شهری
⚪️ پردازش تصاویر پزشکی
● تشخیص تومور
● تحلیل تصاویر MRI و X-ray
⚪️ بینایی صنعتی و تجاری
● کنترل کیفیت در کارخانهها
● اسکن بارکد و تشخیص کالا
✨ بینایی ماشین یکی از ستونهای اصلی فناوریهای هوشمند امروزی است و بدون آن، بسیاری از پیشرفتها در پزشکی، حملونقل و امنیت ممکن نبود.
✅️ در پستهای بعدی، مفاهیم کلیدی بینایی ماشین و نقش یادگیری عمیق در آن را بهصورت جداگانه بررسی میکنیم.
📌 منابع:
🔘 IBM — Computer Vision
🔘 Stanford University
🔘 MIT — Computer Vision Overview
#️⃣ #بینایی_ماشین #هوش_مصنوعی #یادگیری_عمیق #فناوری #پای_ویژن
#ComputerVision #ArtificialIntelligence #DeepLearning #AI
🌐 @PyVision
👌1
PyVision | پایویژن
📘 یادگیری ماشین (Machine Learning) چیست؟ یادگیری ماشین یکی از مهمترین زیرمجموعههای هوش مصنوعی است که به سیستمها این توانایی را میدهد تا از دادهها یاد بگیرند و بدون برنامهنویسی صریح برای هر حالت، عملکرد خود را بهمرور بهبود دهند. به بیان ساده، بهجای…
📘 ۱۰ اصطلاح مهم در یادگیری ماشین
قسمت دوم
1️⃣1️⃣ Training
فرآیند آموزش مدل با استفاده از دادههای آموزشی
1️⃣2️⃣ Validation
بررسی عملکرد مدل در حین آموزش برای جلوگیری از خطا
1️⃣3️⃣ Overfitting
یادگیری بیشازحد داده آموزش و عملکرد ضعیف روی داده جدید
1️⃣4️⃣ Underfitting
ساده بودن بیشازحد مدل و ناتوانی در یادگیری الگوها
1️⃣5️⃣ Bias
خطای ناشی از سادهسازی بیشازحد مدل(سوگیری)
1️⃣6️⃣ Variance
حساسیت بیشازحد مدل به دادههای آموزشی
1️⃣7️⃣ Cross Validation
روش ارزیابی مدل با تقسیم داده به چند بخش
1️⃣8️⃣ Accuracy
درصد پیشبینیهای درست مدل
1️⃣9️⃣ Precision
نسبت پیشبینیهای درست مثبت به کل پیشبینیهای مثبت
2️⃣0️⃣ Recall
نسبت نمونههای مثبت شناساییشده به کل نمونههای مثبت واقعی
✨ این مفاهیم برای ارزیابی، تحلیل و بهبود مدلها ضروری هستند.
📌 منابع:
🔘 Google Machine Learning Glossary
🔘 Scikit-learn Documentation
🔘 Stanford CS229
#️⃣ #یادگیری_ماشین #مدل_سازی #تحلیل_داده #هوش_مصنوعی
#MachineLearning #MLMetrics #DataScience #AI #PyVision
🌐 @PyVision
قسمت دوم
1️⃣1️⃣ Training
فرآیند آموزش مدل با استفاده از دادههای آموزشی
1️⃣2️⃣ Validation
بررسی عملکرد مدل در حین آموزش برای جلوگیری از خطا
1️⃣3️⃣ Overfitting
یادگیری بیشازحد داده آموزش و عملکرد ضعیف روی داده جدید
1️⃣4️⃣ Underfitting
ساده بودن بیشازحد مدل و ناتوانی در یادگیری الگوها
1️⃣5️⃣ Bias
خطای ناشی از سادهسازی بیشازحد مدل(سوگیری)
1️⃣6️⃣ Variance
حساسیت بیشازحد مدل به دادههای آموزشی
1️⃣7️⃣ Cross Validation
روش ارزیابی مدل با تقسیم داده به چند بخش
1️⃣8️⃣ Accuracy
درصد پیشبینیهای درست مدل
1️⃣9️⃣ Precision
نسبت پیشبینیهای درست مثبت به کل پیشبینیهای مثبت
2️⃣0️⃣ Recall
نسبت نمونههای مثبت شناساییشده به کل نمونههای مثبت واقعی
✨ این مفاهیم برای ارزیابی، تحلیل و بهبود مدلها ضروری هستند.
📌 منابع:
🔘 Google Machine Learning Glossary
🔘 Scikit-learn Documentation
🔘 Stanford CS229
#️⃣ #یادگیری_ماشین #مدل_سازی #تحلیل_داده #هوش_مصنوعی
#MachineLearning #MLMetrics #DataScience #AI #PyVision
🌐 @PyVision
🔥1
PyVision | پایویژن
📘 هوش مصنوعی (Artificial Intelligence) چیست؟ هوش مصنوعی به زبان ساده یعنی طراحی سیستمها و برنامههایی که میتوانند رفتارهای هوشمندانه شبیه انسان از خود نشان دهند؛ مثل یادگیری از تجربه، تحلیل دادهها، تصمیمگیری و حل مسئله. این سیستمها بهجای پیروی از دستورهای…
📘 سیستمهای خبره (Expert Systems) چیست؟
سیستمهای خبره یکی از شاخههای کلاسیک هوش مصنوعی هستند که هدف آنها شبیهسازی توانایی تصمیمگیری یک متخصص انسانی در یک حوزهی مشخص است.
این سیستمها بهجای یادگیری از حجم عظیم دادهها، از دانش و قوانین استخراجشده از خبرگان استفاده میکنند. 🧠🤖
به زبان ساده:
سیستم خبره یعنی ماشینی که مثل یک متخصص فکر میکند و مشاوره میدهد.
🔹 اجزای اصلی سیستمهای خبره
1️⃣ Knowledge Base (پایگاه دانش / علم)
شامل قوانین، حقایق و دانش تخصصی یک حوزه بسان قوانین تشخیص بیماری
2️⃣ Inference Engine (موتور استنتاج)
بخشی که با استفاده از قوانین، نتیجهگیری و تصمیمگیری میکند، بسان اگر «علائم A و B وجود دارد» → «احتمال بیماری X»
3️⃣ User Interface (رابط کاربری)
محل تعامل کاربر با سیستم، پرسشوپاسخ برای دریافت اطلاعات از کاربر
🔹 سیستمهای خبره چگونه کار میکنند؟ (خیلی خلاصه)
1️⃣ کاربر اطلاعات اولیه را وارد میکند
2️⃣ موتور استنتاج، قوانین پایگاه دانش را بررسی میکند
3️⃣ سیستم به یک نتیجه یا پیشنهاد میرسد
4️⃣ خروجی بهصورت توصیه یا تصمیم نمایش داده میشود
🔹 نمونه کاربردهای سیستمهای خبره
⚪️ پزشکی
● تشخیص بیماری
● پیشنهاد روش درمان
⚪️ صنعت و مهندسی
● عیبیابی تجهیزات
● نگهداری پیشبینانه
⚪️ کسبوکار و بازارهای مالی
● تحلیل ریسک
● پشتیبانی تصمیمگیری مدیریتی
⚪️ آموزش
● سیستمهای آموزش هوشمند
● راهنمایی گامبهگام کاربران
✨ سیستمهای خبره از اولین کاربردهای موفق هوش مصنوعی بودند و هنوز هم در حوزههایی که دانش تخصصی و قوانین مشخص وجود دارد، بسیار مؤثر هستند.
✅️ در پستهای بعدی، تفاوت سیستمهای خبره با یادگیری ماشین و کاربردهای ترکیبی آنها را بررسی میکنیم.
📌 منابع:
🔘 Encyclopaedia Britannica — Expert System
🔘 IBM — Expert Systems Overview
🔘 MIT — Knowledge-Based Systems
#️⃣ #سیستم_خبره #هوش_مصنوعی #تصمیم_گیری #فناوری
#ExpertSystems #ArtificialIntelligence #DecisionSupport #AI
🌐 @PyVision
سیستمهای خبره یکی از شاخههای کلاسیک هوش مصنوعی هستند که هدف آنها شبیهسازی توانایی تصمیمگیری یک متخصص انسانی در یک حوزهی مشخص است.
این سیستمها بهجای یادگیری از حجم عظیم دادهها، از دانش و قوانین استخراجشده از خبرگان استفاده میکنند. 🧠🤖
به زبان ساده:
سیستم خبره یعنی ماشینی که مثل یک متخصص فکر میکند و مشاوره میدهد.
🔹 اجزای اصلی سیستمهای خبره
1️⃣ Knowledge Base (پایگاه دانش / علم)
شامل قوانین، حقایق و دانش تخصصی یک حوزه بسان قوانین تشخیص بیماری
2️⃣ Inference Engine (موتور استنتاج)
بخشی که با استفاده از قوانین، نتیجهگیری و تصمیمگیری میکند، بسان اگر «علائم A و B وجود دارد» → «احتمال بیماری X»
3️⃣ User Interface (رابط کاربری)
محل تعامل کاربر با سیستم، پرسشوپاسخ برای دریافت اطلاعات از کاربر
🔹 سیستمهای خبره چگونه کار میکنند؟ (خیلی خلاصه)
1️⃣ کاربر اطلاعات اولیه را وارد میکند
2️⃣ موتور استنتاج، قوانین پایگاه دانش را بررسی میکند
3️⃣ سیستم به یک نتیجه یا پیشنهاد میرسد
4️⃣ خروجی بهصورت توصیه یا تصمیم نمایش داده میشود
🔹 نمونه کاربردهای سیستمهای خبره
⚪️ پزشکی
● تشخیص بیماری
● پیشنهاد روش درمان
⚪️ صنعت و مهندسی
● عیبیابی تجهیزات
● نگهداری پیشبینانه
⚪️ کسبوکار و بازارهای مالی
● تحلیل ریسک
● پشتیبانی تصمیمگیری مدیریتی
⚪️ آموزش
● سیستمهای آموزش هوشمند
● راهنمایی گامبهگام کاربران
✨ سیستمهای خبره از اولین کاربردهای موفق هوش مصنوعی بودند و هنوز هم در حوزههایی که دانش تخصصی و قوانین مشخص وجود دارد، بسیار مؤثر هستند.
✅️ در پستهای بعدی، تفاوت سیستمهای خبره با یادگیری ماشین و کاربردهای ترکیبی آنها را بررسی میکنیم.
📌 منابع:
🔘 Encyclopaedia Britannica — Expert System
🔘 IBM — Expert Systems Overview
🔘 MIT — Knowledge-Based Systems
#️⃣ #سیستم_خبره #هوش_مصنوعی #تصمیم_گیری #فناوری
#ExpertSystems #ArtificialIntelligence #DecisionSupport #AI
🌐 @PyVision
❤1👌1
PyVision | پایویژن
📘 یادگیری عمیق (Deep Learning) چیست؟ یادگیری عمیق یکی از زیرمجموعههای یادگیری ماشین و در نتیجه هوش مصنوعی است که از شبکههای عصبی چندلایه الهامگرفته از مغز انسان استفاده میکند. در این روش، سیستم میتواند ویژگیها و الگوهای پیچیده را بهصورت خودکار از دادههای…
🟦 اصطلاحات پایه یادگیری عمیق (Deep Learning)
قسمت اول
1️⃣ Deep Learning
رویکردی از یادگیری ماشین که با شبکههای عصبی چندلایه، الگوهای پیچیده را از دادههای حجیم یاد میگیرد.
2️⃣ Neural Network (NN)
مدلی محاسباتی متشکل از نورونهای مصنوعی که روابط غیرخطی بین ورودی و خروجی را یاد میگیرد.
3️⃣ Artificial Neuron
واحد پایه شبکه عصبی که مجموع وزندار ورودیها را پردازش میکند.
4️⃣ Layer
مجموعهای از نورونها در یک سطح مشخص از شبکه عصبی.
5️⃣ Hidden Layer
لایههای میانی که ویژگیهای پنهان و سطح بالای داده را استخراج میکنند.
6️⃣ Weights
پارامترهای قابل یادگیری که اهمیت هر ورودی را مشخص میکنند.
7️⃣ Bias
پارامتر کمکی برای افزایش انعطافپذیری مدل و جابهجایی تابع تصمیم.
8️⃣ Activation Function
تابعی غیرخطی که توان یادگیری روابط پیچیده را به شبکه میدهد.
9️⃣ Loss Function
معیاری برای سنجش فاصله پیشبینی مدل از مقدار واقعی.
🔟 Training
فرآیند تنظیم وزنها با هدف کمینهسازی خطا.
📌 منابع:
🔘 Deep Learning Book
🔘 Stanford CS231n – Neural Networks
🔘 TensorFlow Glossary
#️⃣ #یادگیری_عمیق #شبکه_عصبی #هوش_مصنوعی
#DeepLearning #NeuralNetworks #AI
🌐 @PyVision
قسمت اول
1️⃣ Deep Learning
رویکردی از یادگیری ماشین که با شبکههای عصبی چندلایه، الگوهای پیچیده را از دادههای حجیم یاد میگیرد.
2️⃣ Neural Network (NN)
مدلی محاسباتی متشکل از نورونهای مصنوعی که روابط غیرخطی بین ورودی و خروجی را یاد میگیرد.
3️⃣ Artificial Neuron
واحد پایه شبکه عصبی که مجموع وزندار ورودیها را پردازش میکند.
4️⃣ Layer
مجموعهای از نورونها در یک سطح مشخص از شبکه عصبی.
5️⃣ Hidden Layer
لایههای میانی که ویژگیهای پنهان و سطح بالای داده را استخراج میکنند.
6️⃣ Weights
پارامترهای قابل یادگیری که اهمیت هر ورودی را مشخص میکنند.
7️⃣ Bias
پارامتر کمکی برای افزایش انعطافپذیری مدل و جابهجایی تابع تصمیم.
8️⃣ Activation Function
تابعی غیرخطی که توان یادگیری روابط پیچیده را به شبکه میدهد.
9️⃣ Loss Function
معیاری برای سنجش فاصله پیشبینی مدل از مقدار واقعی.
🔟 Training
فرآیند تنظیم وزنها با هدف کمینهسازی خطا.
📌 منابع:
🔘 Deep Learning Book
🔘 Stanford CS231n – Neural Networks
🔘 TensorFlow Glossary
#️⃣ #یادگیری_عمیق #شبکه_عصبی #هوش_مصنوعی
#DeepLearning #NeuralNetworks #AI
🌐 @PyVision
🤩2✍1
The Hundred-page Machine Learning Book (Andriy Burkov).pdf
21.1 MB
📚 معرفی کتاب:
قسمت بیست و یک
The Hundred‑Page Machine Learning Book
نویسنده:
Andriy Burkov
📊 سطح: متوسط
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● یادگیری نظارتشده و بدون نظارت، SVM، شبکههای عصبی، کاهش ابعاد و سایر مفاهیم اصلی، همگی تنها در حدود ۱۰۰ صفحه
● دسترسی به یک ویکی بهروزشده با پرسشوپاسخ، قطعهکدها و منابع تکمیلی.
● دسترسی رایگان به کتاب
● مورد تحسین رهبران فنی شرکتهایی مانند LinkedIn، Amazon و eBay قرار گرفته است.
✨ آنچه این کتاب را خاص میکند:
این کتاب با رویکردی مستقیم مبانی و مفاهیم پیشرفته یادگیری ماشین را یکجا جمع میکند. نویسنده، خود یک متخصص با ۱۰ سال سابقه رهبری تیمهای فعال در حوزه هوش مصنوعی است و کتاب را بر اساس تجربه عملی نوشته تا ما را سریعاً به نتیجه برساند.
📖 سرفصلهای کلیدی:
● یادگیری نظارتشده و بدون نظارت
● ماشین بردار پشتیبانی (SVM) و شبکههای عصبی
● روشهای Ensemble و کاهش ابعاد
● مهندسی ویژگی و تنظیم ابرپارامترها
● خودرمزنگارها (Autoencoders) و یادگیری انتقالی
📌 اطلاعات بیشتر:
🔘 themlbook.com
#️⃣ #کتاب_بیست_و_یک
#MachineLearning #AI #DataScience
🌐 @PyVision
قسمت بیست و یک
The Hundred‑Page Machine Learning Book
نویسنده:
Andriy Burkov
📊 سطح: متوسط
🗣 زبان: انگلیسی
💎 ویژگیهای منحصر به فرد کتاب:
● یادگیری نظارتشده و بدون نظارت، SVM، شبکههای عصبی، کاهش ابعاد و سایر مفاهیم اصلی، همگی تنها در حدود ۱۰۰ صفحه
● دسترسی به یک ویکی بهروزشده با پرسشوپاسخ، قطعهکدها و منابع تکمیلی.
● دسترسی رایگان به کتاب
● مورد تحسین رهبران فنی شرکتهایی مانند LinkedIn، Amazon و eBay قرار گرفته است.
✨ آنچه این کتاب را خاص میکند:
این کتاب با رویکردی مستقیم مبانی و مفاهیم پیشرفته یادگیری ماشین را یکجا جمع میکند. نویسنده، خود یک متخصص با ۱۰ سال سابقه رهبری تیمهای فعال در حوزه هوش مصنوعی است و کتاب را بر اساس تجربه عملی نوشته تا ما را سریعاً به نتیجه برساند.
📖 سرفصلهای کلیدی:
● یادگیری نظارتشده و بدون نظارت
● ماشین بردار پشتیبانی (SVM) و شبکههای عصبی
● روشهای Ensemble و کاهش ابعاد
● مهندسی ویژگی و تنظیم ابرپارامترها
● خودرمزنگارها (Autoencoders) و یادگیری انتقالی
📌 اطلاعات بیشتر:
🔘 themlbook.com
#️⃣ #کتاب_بیست_و_یک
#MachineLearning #AI #DataScience
🌐 @PyVision
🤩1