Machine learning books and papers
22.4K subscribers
967 photos
54 videos
928 files
1.31K links
Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.iss.one/Machine_learn
Download Telegram
Data-Mining-in-Python.pdf
12.8 MB
Book: DATA MINING
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
โค6๐Ÿ‘6
Designing Machine Learning Systems.pdf
10 MB
Book: Designing Machine Systems An Iterative Process for Production-Ready Applications
Authors: Chip Huyen
ISBN: 978-1-098-10796-3
year: 2022
pages: 463
Tags: #Python #datamining #ML
@Machine_learn
๐Ÿ‘6โค2
AW.Pandas.for.Everyone.Python.Data.Analysis.pdf
75.1 MB
Book: Pandas for Everyone
Authors: D A N I E L Y. C H E N
ISBN: 978-0-13-789115-3
year: 2023
pages: 1148
Tags: #Pandas #python
@Machine_learn
๐Ÿ‘3
Apress.Applied.Recommender.Systems.with.Python.pdf
12.3 MB
Book: Applied Recommender Systems with Python
Authors: Akshay Kulkarni Adarsha ,Shivananda Anoosh Kulkarni
V, Adithya Krishnan
ISBN: 978-1-4842-8954-9
year: 2022
pages: 257
Tags: #Recommender_system #python
@Machine_learn
โค2๐Ÿ”ฅ2๐Ÿ‘1
pymbook.pdf
1.1 MB
Book: Python for you and me
Release 0.5.beta1
Authors: Kushal Das
ISBN: Null
year: 2023
pages: 175
Tags: #Python #Code
@Machine_learn
โค5
Deep-Learning-for-Natural-Language-Processing.pdf
7.3 MB
Book: Deep Learning for Natural Language Processing (Creating Neural Networks with Python)
Authors: Palash Goyal, Sumit Pandey, Karan Jain
ISBN: 978-1-4842-3685-7
year: 2018
pages: 290
Tags: #NLP #DL #Python #Code
@Machine_learn
๐Ÿ‘6๐Ÿ”ฅ2
25_Awesome_Python_Scripts.pdf
171.4 KB
A Collection of 25 Awesome Python Scripts (mini projects)
#Python #Mini_Projects
@Machine_learn
๐Ÿ‘5
python-regular-expressions-cheat-sheet.pdf
49 KB
Data Science Cheat Sheet
Python Regular Expressions
#Python
#RE
@Machine_learn
๐Ÿ‘8
Intro to Python for Computer Science and Data Science 2022.pdf
49.6 MB
Book: Intro to Pythonยฎ for Computer Science and Data Science
Authors: Paul Deitel โ€ข Harvey Deitel
ISBN: 1-292-36490-4
year: 2022
pages: 882
Tags:#Python #Computer_science #Data_Science
@Machine_learn
โค10๐Ÿ‘1
Graph Data Modeling in Python.pdf
5.5 MB
Book: Graph Data Modeling in Python
Authors: Gary Hutson, Matt Jackson
ISBN: 978-1-80461-803-5
year: 2023
pages: 236
Tags:#Python #Graph #Data_Science
@Machine_learn
๐Ÿ‘14
Modeling and Simulation in Python.pdf
8.1 MB
Book: MODELING AND SIMULATION
IN PYTHON AN INTRODUSTENNINGERSCIENTISTS
Authors: Allen B. Downey
ISBN: 978-1-7185-0217-8
year: 2023
pages: 344
Tags:#Python #"Modeling
@Machine_learn
๐Ÿ‘8
29733376.pdf
3.4 MB
Book: Test Your Skills In Python
SECOND EDITION
Authors: SHIVANI GOEL
ISBN: 978-93-5551-181-2
year: 2023
pages: 308
Tags:#Python
@Machine_learn
๐Ÿ”ฅ7โค3๐Ÿ‘3
Mathematics of Deep Learning.pdf
10.8 MB
Book: Mathematics of Deep Learning
Authors: Leonid Berlyand and Pierre-Emmanuel Jabin
ISBN: 978-3-11-102431-8
year: 2023
pages: 308
Tags:#Python
@Machine_learn
โค4๐Ÿ‘3
30340466.pdf
5.1 MB
Book: Blockchain Tethered AI
Trackable, Traceable Artificial Intelligence and Machine Learning
Authors: Karen Kilroy, Lynn Riley, and Deepak Bhatta
ISBN: 978-1-098-13048-0
year: 2023
pages: 307
Tags:#Python #Blockchain
@Machine_learn
๐Ÿ‘3
Python.for.Scientists.pdf
7.1 MB
Book: Python for Scientists
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn
๐Ÿ‘3
Foundational-Python-for-Data-Science_bibis.ir.pdf
16.2 MB
Book: Foundation Python for Data Scientist
Authors: Kennedy R
ISBN: Null
year: 202
pages: 686
Tags:#Python
@Machine_learn
๐Ÿ‘4
aipython.pdf
2.4 MB
Book: ๐Ÿ“šPython code for Artificial Intelligence Foundations of Computational Agents
Authors: David L. Poole and Alan K. Mackworth
year: 2024
pages: 392
Tags: #Python
@Machine_learn
๐Ÿ‘7
Practical Statistics for Data Scientists.pdf
16 MB
Practical Statistics for Data Scientists
50+ Essential Concepts Using R and Python
#Python #Book

@Machine_learn
โค2
Executable Code Actions Elicit Better LLM Agents

1 Feb 2024 ยท Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji

Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating #JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source #LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with #Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.

Paper: https://arxiv.org/pdf/2402.01030v4.pdf

Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act

Datasets: MMLU - GSM8K - HumanEval - MATH

@Machine_learn
โค1