Forwarded from Github LLMs
Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap
Large language models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and evolutionary algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM's further enhancement under black-box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: LLM-enhanced EA and EA-enhanced #LLM. Some integrated synergy methods are further introduced to exemplify the complementarity between LLMs and EAs in diverse scenarios, including code generation, software engineering, neural architecture search, and various generation tasks. As the first comprehensive review focused on the EA research in the era of #LLMs, this paper provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. The identified challenges and future directions offer guidance for researchers and practitioners to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence.
Paper: https://arxiv.org/pdf/2401.10034v3.pdf
Code: https://github.com/wuxingyu-ai/llm4ec
https://t.iss.one/deep_learning_proj
Large language models (LLMs) have not only revolutionized natural language processing but also extended their prowess to various domains, marking a significant stride towards artificial general intelligence. The interplay between LLMs and evolutionary algorithms (EAs), despite differing in objectives and methodologies, share a common pursuit of applicability in complex problems. Meanwhile, EA can provide an optimization framework for LLM's further enhancement under black-box settings, empowering LLM with flexible global search capacities. On the other hand, the abundant domain knowledge inherent in LLMs could enable EA to conduct more intelligent searches. Furthermore, the text processing and generative capabilities of LLMs would aid in deploying EAs across a wide range of tasks. Based on these complementary advantages, this paper provides a thorough review and a forward-looking roadmap, categorizing the reciprocal inspiration into two main avenues: LLM-enhanced EA and EA-enhanced #LLM. Some integrated synergy methods are further introduced to exemplify the complementarity between LLMs and EAs in diverse scenarios, including code generation, software engineering, neural architecture search, and various generation tasks. As the first comprehensive review focused on the EA research in the era of #LLMs, this paper provides a foundational stepping stone for understanding the collaborative potential of LLMs and EAs. The identified challenges and future directions offer guidance for researchers and practitioners to unlock the full potential of this innovative collaboration in propelling advancements in optimization and artificial intelligence.
Paper: https://arxiv.org/pdf/2401.10034v3.pdf
Code: https://github.com/wuxingyu-ai/llm4ec
https://t.iss.one/deep_learning_proj
👍4❤1
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Paper: https://arxiv.org/abs/2501.12948
#nn #LLM
@Machine_learn
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Paper: https://arxiv.org/abs/2501.12948
#nn #LLM
@Machine_learn
arXiv.org
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via...
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning...
❤2
LLM4Decompile: Decompiling Binary Code with Large Language Models
8 Mar 2024 · Hanzhuo Tan, Qi Luo, Jing Li, Yuqun Zhang ·
Decompilation aims to convert binary code to high-level source code, but traditional tools like Ghidra often produce results that are difficult to read and execute. Motivated by the advancements in Large Language Models (LLMs), we propose LLM4Decompile, the first and largest open-source #LLM series (1.3B to 33B) trained to decompile binary code. We optimize the LLM training process and introduce the LLM4Decompile-End models to decompile binary directly. The resulting models significantly outperform GPT-4o and Ghidra on the HumanEval and ExeBench benchmarks by over 100% in terms of re-executability rate. Additionally, we improve the standard refinement approach to fine-tune the LLM4Decompile-Ref models, enabling them to effectively refine the decompiled code from Ghidra and achieve a further 16.2% improvement over the LLM4Decompile-End. LLM4Decompile demonstrates the potential of LLMs to revolutionize binary code decompilation, delivering remarkable improvements in readability and executability while complementing conventional tools for optimal results.
Paper: https://arxiv.org/pdf/2403.05286v3.pdf
Code: https://github.com/albertan017/LLM4Decompile
@Machine_learn
8 Mar 2024 · Hanzhuo Tan, Qi Luo, Jing Li, Yuqun Zhang ·
Decompilation aims to convert binary code to high-level source code, but traditional tools like Ghidra often produce results that are difficult to read and execute. Motivated by the advancements in Large Language Models (LLMs), we propose LLM4Decompile, the first and largest open-source #LLM series (1.3B to 33B) trained to decompile binary code. We optimize the LLM training process and introduce the LLM4Decompile-End models to decompile binary directly. The resulting models significantly outperform GPT-4o and Ghidra on the HumanEval and ExeBench benchmarks by over 100% in terms of re-executability rate. Additionally, we improve the standard refinement approach to fine-tune the LLM4Decompile-Ref models, enabling them to effectively refine the decompiled code from Ghidra and achieve a further 16.2% improvement over the LLM4Decompile-End. LLM4Decompile demonstrates the potential of LLMs to revolutionize binary code decompilation, delivering remarkable improvements in readability and executability while complementing conventional tools for optimal results.
Paper: https://arxiv.org/pdf/2403.05286v3.pdf
Code: https://github.com/albertan017/LLM4Decompile
@Machine_learn
👍4
Executable Code Actions Elicit Better LLM Agents
1 Feb 2024 · Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji
Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating #JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source #LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with #Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.
Paper: https://arxiv.org/pdf/2402.01030v4.pdf
Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act
Datasets: MMLU - GSM8K - HumanEval - MATH
@Machine_learn
1 Feb 2024 · Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, Heng Ji
Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating #JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source #LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with #Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.
Paper: https://arxiv.org/pdf/2402.01030v4.pdf
Codes:
https://github.com/epfllm/megatron-llm
https://github.com/xingyaoww/code-act
Datasets: MMLU - GSM8K - HumanEval - MATH
@Machine_learn
❤1