🔵 عنوان مقاله
Post-Quantum Cryptography in Kubernetes
🟢 خلاصه مقاله:
با توجه به ظهور رایانههای کوانتومی، زیرساختهای Kubernetes در همه لایهها—از کنترلپلین تا ترافیک سرویسبهسرویس و زنجیره تأمین—در معرض ریسک رمزنگاری کلاسیک قرار میگیرند. راهبرد عملی، حرکت تدریجی بهسمت چابکی رمزنگاری و استفاده از حالتهای هیبریدی است: بهکارگیری الگوریتمهای منتخب NIST مانند CRYSTALS-Kyber برای تبادل کلید و CRYSTALS-Dilithium و SPHINCS+ برای امضا، در کنار الگوریتمهای فعلی، تا ضمن حفظ سازگاری، در برابر سناریوی «اکنون جمعآوری کن، بعداً رمزگشایی کن» مقاوم شوید.
در لبه و بین سرویسها، میتوان با پروکسیها و کتابخانههای سازگار با PQC آزمایش کرد؛ برای مثال، ساختهای OpenSSL 3 با liboqs یا بیلدهای سفارشی که در TLS 1.3 تبادل کلید هیبریدی مانند X25519+Kyber را مذاکره میکنند. در Kubernetes این تغییر معمولاً روی Ingress/Egress یا دیتاپلین سرویس مش پیاده میشود؛ گامبهگام و قابل بازگشت، با سنجش اندازه هندشیک، تأخیر و مصرف CPU. از آنجا که WebPKI هنوز عمدتاً امضای کلاسیک میخواهد، رویکرد رایج کوتاهمدت این است: گواهی با امضای کلاسیک، اما تبادل کلید هیبریدی در TLS.
در داخل کلاستر، سرویسمشهایی مانند Istio و Linkerd میتوانند mTLS را با پروکسیهای سازگار با PQC در مرزها یا بیلدهای آزمایشی دیتاپلین توسعه دهند، در حالی که کنترلپلین هنوز گواهی کلاسیک صادر میکند. طول عمر گواهیها را کوتاه نگه دارید، چرخش خودکار را فعال کنید و اثر افزایش اندازه هندشیک را بر MTU، کارایی و کانکارنسی پایش کنید.
برای کنترلپلین، ابتدا مسیرهای kube-apiserver، kubelet و etcd را ایمن کنید. اگر مؤلفههای بومی هنوز از PQC در TLS پشتیبانی مستقیم ندارند، میتوان از سایدکار یا پروکسی جلویی برای پیادهسازی تبادل کلید هیبریدی استفاده کرد. برای داده در حال سکون، etcd از رمز متقارن استفاده میکند؛ مسئله PQC حفاظت از کلیدهای حفاظتکننده داده است. یکپارچهسازی Kubernetes KMS Provider با KMS خارجی که از لفافگذاری کلید هیبریدی/PQC پشتیبانی میکند، ریسک کوانتومی را بدون تغییر در کد برنامه کاهش میدهد.
زنجیره تأمین نیز باید همراه شود: امضای تصاویر و اسناد را با بهترینروش فعلی ادامه دهید و در عین حال ابزارها و قالبهای سازگار با PQC (مانند برنامههای آینده Sigstore) را رصد کنید. در محیطهای آزمایشی، امضاهای موازی PQ را برای سنجش اندازه، هزینه تأیید و انطباق سیاستی بررسی کنید و مطمئن شوید SBOM، پذیرش و سیاستها قابل ارتقا بمانند.
نقشه راه، مرحلهای و مبتنی بر اندازهگیری است: فهرست وابستگیهای رمزنگاری را تهیه کنید، TLS 1.3 را همهجا فعال و الگوریتمهای ضعیف را حذف کنید، آزمایش هیبرید را از مسیرهای کمریسک آغاز و سپس به Ingress، سرویسمش و نقاط کنترلپلین گسترش دهید. برنامههای بازگشت داشته باشید، سازگاری را دقیق رصد کنید و بودجه کارایی تعریف کنید. هدف نهایی، چابکی رمزنگاری است تا با تثبیت استانداردهای PQC بتوانید سریع و ایمن مهاجرت کنید.
#PostQuantum #Kubernetes #PQC #TLS13 #ServiceMesh #Istio #etcd #CloudSecurity
🟣لینک مقاله:
https://ku.bz/DzzV1cR4z
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
Post-Quantum Cryptography in Kubernetes
🟢 خلاصه مقاله:
با توجه به ظهور رایانههای کوانتومی، زیرساختهای Kubernetes در همه لایهها—از کنترلپلین تا ترافیک سرویسبهسرویس و زنجیره تأمین—در معرض ریسک رمزنگاری کلاسیک قرار میگیرند. راهبرد عملی، حرکت تدریجی بهسمت چابکی رمزنگاری و استفاده از حالتهای هیبریدی است: بهکارگیری الگوریتمهای منتخب NIST مانند CRYSTALS-Kyber برای تبادل کلید و CRYSTALS-Dilithium و SPHINCS+ برای امضا، در کنار الگوریتمهای فعلی، تا ضمن حفظ سازگاری، در برابر سناریوی «اکنون جمعآوری کن، بعداً رمزگشایی کن» مقاوم شوید.
در لبه و بین سرویسها، میتوان با پروکسیها و کتابخانههای سازگار با PQC آزمایش کرد؛ برای مثال، ساختهای OpenSSL 3 با liboqs یا بیلدهای سفارشی که در TLS 1.3 تبادل کلید هیبریدی مانند X25519+Kyber را مذاکره میکنند. در Kubernetes این تغییر معمولاً روی Ingress/Egress یا دیتاپلین سرویس مش پیاده میشود؛ گامبهگام و قابل بازگشت، با سنجش اندازه هندشیک، تأخیر و مصرف CPU. از آنجا که WebPKI هنوز عمدتاً امضای کلاسیک میخواهد، رویکرد رایج کوتاهمدت این است: گواهی با امضای کلاسیک، اما تبادل کلید هیبریدی در TLS.
در داخل کلاستر، سرویسمشهایی مانند Istio و Linkerd میتوانند mTLS را با پروکسیهای سازگار با PQC در مرزها یا بیلدهای آزمایشی دیتاپلین توسعه دهند، در حالی که کنترلپلین هنوز گواهی کلاسیک صادر میکند. طول عمر گواهیها را کوتاه نگه دارید، چرخش خودکار را فعال کنید و اثر افزایش اندازه هندشیک را بر MTU، کارایی و کانکارنسی پایش کنید.
برای کنترلپلین، ابتدا مسیرهای kube-apiserver، kubelet و etcd را ایمن کنید. اگر مؤلفههای بومی هنوز از PQC در TLS پشتیبانی مستقیم ندارند، میتوان از سایدکار یا پروکسی جلویی برای پیادهسازی تبادل کلید هیبریدی استفاده کرد. برای داده در حال سکون، etcd از رمز متقارن استفاده میکند؛ مسئله PQC حفاظت از کلیدهای حفاظتکننده داده است. یکپارچهسازی Kubernetes KMS Provider با KMS خارجی که از لفافگذاری کلید هیبریدی/PQC پشتیبانی میکند، ریسک کوانتومی را بدون تغییر در کد برنامه کاهش میدهد.
زنجیره تأمین نیز باید همراه شود: امضای تصاویر و اسناد را با بهترینروش فعلی ادامه دهید و در عین حال ابزارها و قالبهای سازگار با PQC (مانند برنامههای آینده Sigstore) را رصد کنید. در محیطهای آزمایشی، امضاهای موازی PQ را برای سنجش اندازه، هزینه تأیید و انطباق سیاستی بررسی کنید و مطمئن شوید SBOM، پذیرش و سیاستها قابل ارتقا بمانند.
نقشه راه، مرحلهای و مبتنی بر اندازهگیری است: فهرست وابستگیهای رمزنگاری را تهیه کنید، TLS 1.3 را همهجا فعال و الگوریتمهای ضعیف را حذف کنید، آزمایش هیبرید را از مسیرهای کمریسک آغاز و سپس به Ingress، سرویسمش و نقاط کنترلپلین گسترش دهید. برنامههای بازگشت داشته باشید، سازگاری را دقیق رصد کنید و بودجه کارایی تعریف کنید. هدف نهایی، چابکی رمزنگاری است تا با تثبیت استانداردهای PQC بتوانید سریع و ایمن مهاجرت کنید.
#PostQuantum #Kubernetes #PQC #TLS13 #ServiceMesh #Istio #etcd #CloudSecurity
🟣لینک مقاله:
https://ku.bz/DzzV1cR4z
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
Kubernetes
Post-Quantum Cryptography in Kubernetes
The world of cryptography is on the cusp of a major shift with the advent of quantum computing. While powerful quantum computers are still largely theoretical for many applications, their potential to break current cryptographic standards is a serious concern…