🔵 عنوان مقاله
How to run AI model inference with GPUs on Amazon EKS Auto Mode
🟢 خلاصه مقاله:
اجرای استنتاج مدلهای هوش مصنوعی روی GPU در Amazon EKS Auto Mode با اعلام نیازمندیها در سطح Pod ساده میشود و خودکار ظرفیت GPU را فراهم و مقیاس میدهد. کافی است سرور استنتاج (مثل TensorFlow Serving، TorchServe یا NVIDIA Triton Inference Server) را با CUDA/cuDNN و NVIDIA Container Toolkit در یک ایمیج آماده کنید، در Deployment منابع nvidia.com/gpu و CPU/Memory را درخواست دهید، و با نصب NVIDIA device plugin امکان شناسایی GPU را فراهم کنید. Auto Mode براساس این درخواستها نودهای GPU مناسب را در EC2 تأمین و زمانبندی را تسریع میکند. برای مقیاسپذیری از HPA و اتوسکیلینگ کلاستر استفاده کنید و با تکنیکهایی مثل dynamic batching و multi-model throughput را بالا ببرید؛ برای مدیریت هزینه، right-sizing، استفاده هدفمند از Spot و scale-to-zero را در نظر بگیرید. امنیت و شبکه با VPC CNI، Security Group و IAM Roles for Service Accounts و مشاهدهپذیری با Prometheus/Grafana، DCGM و CloudWatch تکمیل میشوند. در نهایت، با CI/CD و Amazon ECR و الگوهای انتشار امن (blue/green یا canary) استقرار بهصورت قابل تکرار و پایدار از توسعه تا تولید انجام میشود.
#AmazonEKS #Kubernetes #GPU #MLOps #AWS #Inference #AutoScaling #NVIDIA
🟣لینک مقاله:
https://ku.bz/jyGr1NGBX
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
How to run AI model inference with GPUs on Amazon EKS Auto Mode
🟢 خلاصه مقاله:
اجرای استنتاج مدلهای هوش مصنوعی روی GPU در Amazon EKS Auto Mode با اعلام نیازمندیها در سطح Pod ساده میشود و خودکار ظرفیت GPU را فراهم و مقیاس میدهد. کافی است سرور استنتاج (مثل TensorFlow Serving، TorchServe یا NVIDIA Triton Inference Server) را با CUDA/cuDNN و NVIDIA Container Toolkit در یک ایمیج آماده کنید، در Deployment منابع nvidia.com/gpu و CPU/Memory را درخواست دهید، و با نصب NVIDIA device plugin امکان شناسایی GPU را فراهم کنید. Auto Mode براساس این درخواستها نودهای GPU مناسب را در EC2 تأمین و زمانبندی را تسریع میکند. برای مقیاسپذیری از HPA و اتوسکیلینگ کلاستر استفاده کنید و با تکنیکهایی مثل dynamic batching و multi-model throughput را بالا ببرید؛ برای مدیریت هزینه، right-sizing، استفاده هدفمند از Spot و scale-to-zero را در نظر بگیرید. امنیت و شبکه با VPC CNI، Security Group و IAM Roles for Service Accounts و مشاهدهپذیری با Prometheus/Grafana، DCGM و CloudWatch تکمیل میشوند. در نهایت، با CI/CD و Amazon ECR و الگوهای انتشار امن (blue/green یا canary) استقرار بهصورت قابل تکرار و پایدار از توسعه تا تولید انجام میشود.
#AmazonEKS #Kubernetes #GPU #MLOps #AWS #Inference #AutoScaling #NVIDIA
🟣لینک مقاله:
https://ku.bz/jyGr1NGBX
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
Amazon
How to run AI model inference with GPUs on Amazon EKS Auto Mode | Amazon Web Services
In this post, we show you how to swiftly deploy inference workloads on EKS Auto Mode and demonstrate key features that streamline GPU management. We walk through a practical example by deploying open weight models from OpenAI using vLLM, while showing best…
🔵 عنوان مقاله
Cost-optimized ml on production: autoscaling GPU nodes on Kubernetes to zero using keda
🟢 خلاصه مقاله:
این آموزش نشان میدهد چگونه با استفاده از Kubernetes و KEDA ظرفیت GPU را بر اساس طول صف پیامها بهصورت خودکار تا صفر کاهش دهیم و هزینه اجرای ML در محیط تولید را کم کنیم. معماری مبتنی بر یک message queue (مثل Kafka، RabbitMQ یا AWS SQS) است و KEDA با ScaledObject تعداد پادهای مصرفکننده GPU را نسبت به backlog تنظیم میکند (minReplicaCount=0). با فعالبودن Cluster Autoscaler و یک GPU node pool با حداقل اندازه صفر، نودهای GPU فقط هنگام نیاز ایجاد و سپس آزاد میشوند. نکات کلیدی شامل تنظیم nodeSelector/tolerations، درخواست nvidia.com/gpu، کنترل pollingInterval/cooldownPeriod، کاهش cold start با pre-pull و پایش با Prometheus/Grafana است. نتیجه: پرداخت هزینه GPU فقط هنگام وجود کار، همراه با حفظ قابلیت اطمینان و کنترل تأخیر.
#Kubernetes #KEDA #GPU #MLOps #Autoscaling #CostOptimization #MessageQueue #ProductionML
🟣لینک مقاله:
https://ku.bz/Zhb9q3BZx
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
Cost-optimized ml on production: autoscaling GPU nodes on Kubernetes to zero using keda
🟢 خلاصه مقاله:
این آموزش نشان میدهد چگونه با استفاده از Kubernetes و KEDA ظرفیت GPU را بر اساس طول صف پیامها بهصورت خودکار تا صفر کاهش دهیم و هزینه اجرای ML در محیط تولید را کم کنیم. معماری مبتنی بر یک message queue (مثل Kafka، RabbitMQ یا AWS SQS) است و KEDA با ScaledObject تعداد پادهای مصرفکننده GPU را نسبت به backlog تنظیم میکند (minReplicaCount=0). با فعالبودن Cluster Autoscaler و یک GPU node pool با حداقل اندازه صفر، نودهای GPU فقط هنگام نیاز ایجاد و سپس آزاد میشوند. نکات کلیدی شامل تنظیم nodeSelector/tolerations، درخواست nvidia.com/gpu، کنترل pollingInterval/cooldownPeriod، کاهش cold start با pre-pull و پایش با Prometheus/Grafana است. نتیجه: پرداخت هزینه GPU فقط هنگام وجود کار، همراه با حفظ قابلیت اطمینان و کنترل تأخیر.
#Kubernetes #KEDA #GPU #MLOps #Autoscaling #CostOptimization #MessageQueue #ProductionML
🟣لینک مقاله:
https://ku.bz/Zhb9q3BZx
➖➖➖➖➖➖➖➖
👑 @DevOps_Labdon
❤1