π Software Engineering for Games in Serious Contexts (2023)
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/618
π¬ Tags: #SoftwareEngineering
USEFUL CHANNELS FOR YOU
1β£ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2β£ Download Book: https://t.iss.one/c/1854405158/618
π¬ Tags: #SoftwareEngineering
USEFUL CHANNELS FOR YOU
π24β€6π₯1
Best Deep Learning Courses:
https://mltut.com/best-deep-learning-courses-on-coursera/
https://mltut.com/best-deep-learning-courses-on-coursera/
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras
https://t.iss.one/DataScienceM
π3π₯2β€1
This media is not supported in your browser
VIEW IN TELEGRAM
Create pivot tables in your Jupyter Notebook:
Here's the link to the #GitHub repo and documentation:
https://pivottable.js.org/examples/
Here's the link to the #GitHub repo and documentation:
https://pivottable.js.org/examples/
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras
https://t.iss.one/DataScienceM
π6
20x faster KMeans with Faiss!!
#KMeans uses a slow, exhaustive search to find the nearest centroids.
#Faiss uses "Inverted Index"βan optimized data structure to store and index data points for approximate neighbor search.
#KMeans uses a slow, exhaustive search to find the nearest centroids.
#Faiss uses "Inverted Index"βan optimized data structure to store and index data points for approximate neighbor search.
#MachineLearning #DeepLearning #BigData #Datascience #ML #HealthTech #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras
https://t.iss.one/DataScienceM
π6β€2π₯1
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io
def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))
# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)
# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)
# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}
# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)
# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")
process_product_image("user-uploads", "products/summer_dress.jpg")
By: @DataScienceM π
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
β€1