Data Science Machine Learning Data Analysis
38.7K subscribers
3.63K photos
31 videos
39 files
1.27K links
ads: @HusseinSheikho

This channel is for Programmers, Coders, Software Engineers.

1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Download Telegram
πŸ“• Ultimate Guide to Graph Neural Networks (GNNs): Part 3 β€” Advanced GNN Architectures: Transformers, Temporal Networks & Geometric Deep Learning

Duration: ~60 minutes reading time | Comprehensive deep dive into cutting-edge GNN architectures

πŸ†˜ Read: https://hackmd.io/@husseinsheikho/GNN-3

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GraphTransformers #TemporalGNNs #GeometricDeepLearning #AdvancedGNNs #AIforBeginners #AdvancedAI


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀1
πŸ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 4 β€” GNN Training Dynamics, Optimization Challenges, and Scalability Solutions

Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale

Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A

Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GNNOptimization #ScalableGNNs #TrainingDynamics #AIforBeginners #AdvancedAI


βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀4πŸ‘Ž1
πŸ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 5 β€” GNN Applications Across Domains: Real-World Impact in 30 Minutes

Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics

Link: https://hackmd.io/@husseinsheikho/GNN-5

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #RealWorldApplications #HealthcareAI #FinTech #DrugDiscovery #RecommendationSystems #ClimateAI

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀5
πŸ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 6 β€” Advanced Frontiers, Ethics, and Future Directions

Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed

Let's read: https://hackmd.io/@husseinsheikho/GNN-6

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #FutureOfGNNs #EmergingResearch #EthicalAI #GNNBestPractices #AdvancedAI #50MinuteRead

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

πŸ“± Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❀4
πŸ“˜ Ultimate Guide to Graph Neural Networks (GNNs): Part 7 β€” Advanced Implementation, Multimodal Integration, and Scientific Applications

Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications

Read: https://hackmd.io/@husseinsheikho/GNN7

#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #AdvancedGNNs #MultimodalLearning #ScientificAI #GNNImplementation #60MinuteRead

βœ‰οΈ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk
Please open Telegram to view this post
VIEW IN TELEGRAM
❀2
Please open Telegram to view this post
VIEW IN TELEGRAM
❀4πŸ”₯4
✨ Object Tracking with YOLOv8 and Python ✨

πŸ“– Table of Contents Object Tracking with YOLOv8 and Python YOLOv8: Reliable Object Detection and Tracking Understanding YOLOv8 Architecture Mosaic Data Augmentation Anchor-Free Detection C2f (Coarse-to-Fine) Module Decoupled Head Loss Object Detection and Tracking with YOLOv8 Object Detection Object T...

🏷️ #AdvancedComputerVision #DataScience #DeepLearning #MachineLearning #ObjectDetection #ObjectTracking #ProgrammingTutorials #Tutorial #VideoObjectTracking #YOLO
πŸ€–πŸ§  Master Machine Learning: Explore the Ultimate β€œMachine-Learning-Tutorials” Repository

πŸ—“οΈ 23 Oct 2025
πŸ“š AI News & Trends

In today’s data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isn’t just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. That’s where Ujjwal Karn’s Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...

#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
❀2
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io

def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))

# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)

# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)

# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}

# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)

# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")

process_product_image("user-uploads", "products/summer_dress.jpg")


By: @DataScienceM πŸ‘

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❀1
πŸ€–πŸ§  PandasAI: Transforming Data Analysis with Conversational Artificial Intelligence

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In a world dominated by data, the ability to analyze and interpret information efficiently has become a core competitive advantage. From business intelligence dashboards to large-scale machine learning models, data-driven decision-making fuels innovation across industries. Yet, for most people, data analysis remains a technical challenge requiring coding expertise, statistical knowledge and familiarity with libraries like ...

#PandasAI #ConversationalAI #DataAnalysis #ArtificialIntelligence #DataScience #MachineLearning
❀1
πŸ€–πŸ§  Microsoft Data Formulator: Revolutionizing AI-Powered Data Visualization

πŸ—“οΈ 28 Oct 2025
πŸ“š AI News & Trends

In today’s data-driven world, visualization is everything. Whether you’re a business analyst, data scientist or researcher, the ability to convert raw data into meaningful visuals can define the success of your decisions. That’s where Microsoft’s Data Formulator steps in a cutting-edge, open-source platform designed to empower analysts to create rich, AI-assisted visualizations effortlessly. Developed by ...

#Microsoft #DataVisualization #AI #DataScience #OpenSource #Analytics
πŸ’‘ Python: Simple K-Means Clustering Project

K-Means is a popular unsupervised machine learning algorithm used to partition n observations into k clusters, where each observation belongs to the cluster with the nearest mean (centroid). This simple project demonstrates K-Means on the classic Iris dataset using scikit-learn to group similar flower species based on their measurements.

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np

# 1. Load the Iris dataset
iris = load_iris()
X = iris.data # Features (sepal length, sepal width, petal length, petal width)
y = iris.target # True labels (0, 1, 2 for different species) - not used by KMeans

# 2. (Optional but recommended) Scale the features
# K-Means is sensitive to the scale of features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 3. Define and train the K-Means model
# We know there are 3 species in Iris, so we set n_clusters=3
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10) # n_init is important for robust results
kmeans.fit(X_scaled)

# 4. Get the cluster assignments for each data point
labels = kmeans.labels_

# 5. Get the coordinates of the cluster centroids
centroids = kmeans.cluster_centers_

# 6. Visualize the clusters (using first two features for simplicity)
plt.figure(figsize=(8, 6))

# Plot each cluster
colors = ['red', 'green', 'blue']
for i in range(3):
plt.scatter(X_scaled[labels == i, 0], X_scaled[labels == i, 1],
s=50, c=colors[i], label=f'Cluster {i+1}', alpha=0.7)

# Plot the centroids
plt.scatter(centroids[:, 0], centroids[:, 1],
s=200, marker='X', c='black', label='Centroids', edgecolor='white')

plt.title('K-Means Clustering on Iris Dataset (Scaled Features)')
plt.xlabel('Scaled Sepal Length')
plt.ylabel('Scaled Sepal Width')
plt.legend()
plt.grid(True)
plt.show()

# You can also compare with true labels (for evaluation, not part of clustering process itself)
# print("True labels:", y)
# print("K-Means labels:", labels)


Code explanation: This script loads the Iris dataset, scales its features using StandardScaler, and then applies KMeans to group the data into 3 clusters. It visualizes the resulting clusters and their centroids using a scatter plot with the first two scaled features.

#Python #MachineLearning #KMeans #Clustering #DataScience

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
πŸ€–πŸ§  MLOps Basics: A Complete Guide to Building, Deploying and Monitoring Machine Learning Models

πŸ—“οΈ 30 Oct 2025
πŸ“š AI News & Trends

Machine Learning models are powerful but building them is only half the story. The true challenge lies in deploying, scaling and maintaining these models in production environments – a process that requires collaboration between data scientists, developers and operations teams. This is where MLOps (Machine Learning Operations) comes in. MLOps combines the principles of DevOps ...

#MLOps #MachineLearning #DevOps #ModelDeployment #DataScience #ProductionAI
πŸ’‘ Pandas Cheatsheet

A quick guide to essential Pandas operations for data manipulation, focusing on creating, selecting, filtering, and grouping data in a DataFrame.

1. Creating a DataFrame
The primary data structure in Pandas is the DataFrame. It's often created from a dictionary.
import pandas as pd

data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 32, 28],
'City': ['New York', 'Paris', 'New York']}
df = pd.DataFrame(data)

print(df)
# Name Age City
# 0 Alice 25 New York
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ A dictionary is defined where keys become column names and values become the data in those columns. pd.DataFrame() converts it into a tabular structure.

2. Selecting Data with .loc and .iloc
Use .loc for label-based selection and .iloc for integer-position based selection.
# Select the first row by its integer position (0)
print(df.iloc[0])

# Select the row with index label 1 and only the 'Name' column
print(df.loc[1, 'Name'])

# Output for df.iloc[0]:
# Name Alice
# Age 25
# City New York
# Name: 0, dtype: object
#
# Output for df.loc[1, 'Name']:
# Bob

β€’ .iloc[0] gets all data from the row at index position 0.
β€’ .loc[1, 'Name'] gets the data at the intersection of index label 1 and column label 'Name'.

3. Filtering Data
Select subsets of data based on conditions.
# Select rows where Age is greater than 27
filtered_df = df[df['Age'] > 27]
print(filtered_df)
# Name Age City
# 1 Bob 32 Paris
# 2 Charlie 28 New York

β€’ The expression df['Age'] > 27 creates a boolean Series (True/False).
β€’ Using this Series as an index df[...] returns only the rows where the value was True.

4. Grouping and Aggregating
The "group by" operation involves splitting data into groups, applying a function, and combining the results.
# Group by 'City' and calculate the mean age for each city
city_ages = df.groupby('City')['Age'].mean()
print(city_ages)
# City
# New York 26.5
# Paris 32.0
# Name: Age, dtype: float64

β€’ .groupby('City') splits the DataFrame into groups based on unique city values.
β€’ ['Age'].mean() then calculates the mean of the 'Age' column for each of these groups.

#Python #Pandas #DataAnalysis #DataScience #Programming

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀1πŸ‘1
πŸ’‘ SciPy: Scientific Computing in Python

SciPy is a fundamental library for scientific and technical computing in Python. Built on NumPy, it provides a wide range of user-friendly and efficient numerical routines for tasks like optimization, integration, linear algebra, and statistics.

import numpy as np
from scipy.optimize import minimize

# Define a function to minimize: f(x) = (x - 3)^2
def f(x):
return (x - 3)**2

# Find the minimum of the function with an initial guess
res = minimize(f, x0=0)

print(f"Minimum found at x = {res.x[0]:.4f}")
# Output:
# Minimum found at x = 3.0000

β€’ Optimization: scipy.optimize.minimize is used to find the minimum value of a function.
β€’ We provide the function (f) and an initial guess (x0=0).
β€’ The result object (res) contains the solution in the .x attribute.

from scipy.integrate import quad

# Define the function to integrate: f(x) = sin(x)
def integrand(x):
return np.sin(x)

# Integrate sin(x) from 0 to pi
result, error = quad(integrand, 0, np.pi)

print(f"Integral result: {result:.4f}")
print(f"Estimated error: {error:.2e}")
# Output:
# Integral result: 2.0000
# Estimated error: 2.22e-14

β€’ Numerical Integration: scipy.integrate.quad calculates the definite integral of a function over a given interval.
β€’ It returns a tuple containing the integral result and an estimate of the absolute error.

from scipy.linalg import solve

# Solve the linear system Ax = b
# 3x + 2y = 12
# x - y = 1

A = np.array([[3, 2], [1, -1]])
b = np.array([12, 1])

solution = solve(A, b)
print(f"Solution (x, y): {solution}")
# Output:
# Solution (x, y): [2.8 1.8]

β€’ Linear Algebra: scipy.linalg provides more advanced linear algebra routines than NumPy.
β€’ solve(A, b) efficiently finds the solution vector x for a system of linear equations defined by a matrix A and a vector b.

from scipy import stats

# Create two independent samples
sample1 = np.random.normal(loc=5, scale=2, size=100)
sample2 = np.random.normal(loc=5.5, scale=2, size=100)

# Perform an independent t-test
t_stat, p_value = stats.ttest_ind(sample1, sample2)

print(f"T-statistic: {t_stat:.4f}")
print(f"P-value: {p_value:.4f}")
# Output (will vary):
# T-statistic: -1.7432
# P-value: 0.0829

β€’ Statistics: scipy.stats is a powerful module for statistical analysis.
β€’ ttest_ind calculates the T-test for the means of two independent samples.
β€’ The p-value helps determine if the difference between sample means is statistically significant (a low p-value, e.g., < 0.05, suggests it is).

#SciPy #Python #DataScience #ScientificComputing #Statistics

━━━━━━━━━━━━━━━
By: @DataScienceM ✨
❀3
#Pandas #DataAnalysis #Python #DataScience #Tutorial

Top 30 Pandas Functions & Methods

This lesson covers 30 essential Pandas functions for data manipulation and analysis, each with a standalone example and its output.

---

1. pd.DataFrame()
Creates a new DataFrame (a 2D labeled data structure) from various inputs like dictionaries or lists.

import pandas as pd
data = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data)
print(df)

col1  col2
0 1 3
1 2 4


---

2. pd.Series()
Creates a new Series (a 1D labeled array).

import pandas as pd
s = pd.Series([10, 20, 30, 40], name='MyNumbers')
print(s)

0    10
1 20
2 30
3 40
Name: MyNumbers, dtype: int64


---

3. pd.read_csv()
Reads data from a CSV file into a DataFrame. (Assuming a file data.csv exists).

# Create a dummy csv file first
with open('data.csv', 'w') as f:
f.write('Name,Age\nAlice,25\nBob,30')

df = pd.read_csv('data.csv')
print(df)

Name  Age
0 Alice 25
1 Bob 30


---

4. df.to_csv()
Writes a DataFrame to a CSV file.

import pandas as pd
df = pd.DataFrame({'Name': ['Charlie'], 'Age': [35]})
# index=False prevents writing the DataFrame index to the file
df.to_csv('output.csv', index=False)
# You can check that 'output.csv' has been created.
print("File 'output.csv' created.")

File 'output.csv' created.

#PandasIO #DataFrame #Series

---

5. df.head()
Returns the first n rows of the DataFrame (default is 5).

import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.head(3))

Name  Value
0 A 1
1 B 2
2 C 3


---

6. df.tail()
Returns the last n rows of the DataFrame (default is 5).

import pandas as pd
data = {'Name': ['A', 'B', 'C', 'D', 'E', 'F'], 'Value': [1, 2, 3, 4, 5, 6]}
df = pd.DataFrame(data)
print(df.tail(2))

Name  Value
4 E 5
5 F 6


---

7. df.info()
Provides a concise summary of the DataFrame, including data types and non-null values.

import pandas as pd
import numpy as np
data = {'col1': [1, 2, 3], 'col2': [4.0, 5.0, np.nan], 'col3': ['A', 'B', 'C']}
df = pd.DataFrame(data)
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 col1 3 non-null int64
1 col2 2 non-null float64
2 col3 3 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes


---

8. df.shape
Returns a tuple representing the dimensionality (rows, columns) of the DataFrame.

import pandas as pd
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]})
print(df.shape)

(2, 3)

#DataInspection #PandasBasics

---

9. df.describe()
Generates descriptive statistics for numerical columns (count, mean, std, min, max, etc.).

import pandas as pd
df = pd.DataFrame({'Age': [22, 38, 26, 35, 29]})
print(df.describe())
❀2
Top 100 Data Analyst Interview Questions & Answers

#DataAnalysis #InterviewQuestions #SQL #Python #Statistics #CaseStudy #DataScience

Part 1: SQL Questions (Q1-30)

#1. What is the difference between DELETE, TRUNCATE, and DROP?
A:
β€’ DELETE is a DML command that removes rows from a table based on a WHERE clause. It is slower as it logs each row deletion and can be rolled back.
β€’ TRUNCATE is a DDL command that quickly removes all rows from a table. It is faster, cannot be rolled back, and resets table identity.
β€’ DROP is a DDL command that removes the entire table, including its structure, data, and indexes.

#2. Select all unique departments from the employees table.
A: Use the DISTINCT keyword.

SELECT DISTINCT department
FROM employees;


#3. Find the top 5 highest-paid employees.
A: Use ORDER BY and LIMIT.

SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;


#4. What is the difference between WHERE and HAVING?
A:
β€’ WHERE is used to filter records before any groupings are made (i.e., it operates on individual rows).
β€’ HAVING is used to filter groups after aggregations (GROUP BY) have been performed.

-- Find departments with more than 10 employees
SELECT department, COUNT(employee_id)
FROM employees
GROUP BY department
HAVING COUNT(employee_id) > 10;


#5. What are the different types of SQL joins?
A:
β€’ (INNER) JOIN: Returns records that have matching values in both tables.
β€’ LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from the right table.
β€’ RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched records from the left table.
β€’ FULL (OUTER) JOIN: Returns all records when there is a match in either the left or right table.
β€’ SELF JOIN: A regular join, but the table is joined with itself.

#6. Write a query to find the second-highest salary.
A: Use OFFSET or a subquery.

-- Method 1: Using OFFSET
SELECT salary
FROM employees
ORDER BY salary DESC
LIMIT 1 OFFSET 1;

-- Method 2: Using a Subquery
SELECT MAX(salary)
FROM employees
WHERE salary < (SELECT MAX(salary) FROM employees);


#7. Find duplicate emails in a customers table.
A: Group by the email column and use HAVING to find groups with a count greater than 1.

SELECT email, COUNT(email)
FROM customers
GROUP BY email
HAVING COUNT(email) > 1;


#8. What is a primary key vs. a foreign key?
A:
β€’ A Primary Key is a constraint that uniquely identifies each record in a table. It must contain unique values and cannot contain NULL values.
β€’ A Foreign Key is a key used to link two tables together. It is a field (or collection of fields) in one table that refers to the Primary Key in another table.

#9. Explain Window Functions. Give an example.
A: Window functions perform a calculation across a set of table rows that are somehow related to the current row. Unlike aggregate functions, they do not collapse rows.

-- Rank employees by salary within each department
SELECT
name,
department,
salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) as dept_rank
FROM employees;


#10. What is a CTE (Common Table Expression)?
A: A CTE is a temporary, named result set that you can reference within a SELECT, INSERT, UPDATE, or DELETE statement. It helps improve readability and break down complex queries.