π₯ Trending Repository: theHarvester
π Description: E-mails, subdomains and names Harvester - OSINT
π Repository URL: https://github.com/laramies/theHarvester
π Website: https://www.edge-security.com/
π Readme: https://github.com/laramies/theHarvester#readme
π Statistics:
π Stars: 13.4K stars
π Watchers: 319
π΄ Forks: 2.3K forks
π» Programming Languages: Python - Dockerfile
π·οΈ Related Topics:
==================================
π§ By: https://t.iss.one/DataScienceM
π Description: E-mails, subdomains and names Harvester - OSINT
π Repository URL: https://github.com/laramies/theHarvester
π Website: https://www.edge-security.com/
π Readme: https://github.com/laramies/theHarvester#readme
π Statistics:
π Stars: 13.4K stars
π Watchers: 319
π΄ Forks: 2.3K forks
π» Programming Languages: Python - Dockerfile
π·οΈ Related Topics:
#python #osint #discovery #emails #recon #information_gathering #blueteam #reconnaissance #redteam #subdomain_enumeration
==================================
π§ By: https://t.iss.one/DataScienceM
π₯ Trending Repository: LLMs-from-scratch
π Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
π Repository URL: https://github.com/rasbt/LLMs-from-scratch
π Website: https://amzn.to/4fqvn0D
π Readme: https://github.com/rasbt/LLMs-from-scratch#readme
π Statistics:
π Stars: 68.3K stars
π Watchers: 613
π΄ Forks: 9.6K forks
π» Programming Languages: Jupyter Notebook - Python
π·οΈ Related Topics:
==================================
π§ By: https://t.iss.one/DataScienceM
π Description: Implement a ChatGPT-like LLM in PyTorch from scratch, step by step
π Repository URL: https://github.com/rasbt/LLMs-from-scratch
π Website: https://amzn.to/4fqvn0D
π Readme: https://github.com/rasbt/LLMs-from-scratch#readme
π Statistics:
π Stars: 68.3K stars
π Watchers: 613
π΄ Forks: 9.6K forks
π» Programming Languages: Jupyter Notebook - Python
π·οΈ Related Topics:
#python #machine_learning #ai #deep_learning #pytorch #artificial_intelligence #transformer #gpt #language_model #from_scratch #large_language_models #llm #chatgpt
==================================
π§ By: https://t.iss.one/DataScienceM
Forwarded from Python | Machine Learning | Coding | R
π 2025 FREE Study Recourses from SPOTO for yβall β Donβt Miss Out!
β 100% Free Downloads
β No signup / spam
π #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
π #Cloud Computing: https://bit.ly/45Rj1gm
βοΈ #AI Kits: https://bit.ly/4m4bHTc
π #CCNA Courses: https://bit.ly/45TL7rm
π§ Free Online Practice β Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! π₯
Amazing Discounts for π CCNA 200-301 π CCNP 400-007 and moreβ¦
π² Contact admin to grab them: https://wa.link/uxde01
β 100% Free Downloads
β No signup / spam
π #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
π #Cloud Computing: https://bit.ly/45Rj1gm
βοΈ #AI Kits: https://bit.ly/4m4bHTc
π #CCNA Courses: https://bit.ly/45TL7rm
π§ Free Online Practice β Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! π₯
Amazing Discounts for π CCNA 200-301 π CCNP 400-007 and moreβ¦
π² Contact admin to grab them: https://wa.link/uxde01
β€2
Forwarded from Python | Machine Learning | Coding | R
This media is not supported in your browser
VIEW IN TELEGRAM
This GitHub repository is a real treasure trove of free programming books.
Here you'll find hundreds of books on topics like #AI, #blockchain, app development, #game development, #Python #webdevelopment, #promptengineering, and many moreβ
GitHub: https://github.com/EbookFoundation/free-programming-books
https://t.iss.one/CodeProgrammerβ
Here you'll find hundreds of books on topics like #AI, #blockchain, app development, #game development, #Python #webdevelopment, #promptengineering, and many more
GitHub: https://github.com/EbookFoundation/free-programming-books
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
In Python, handling CSV files is straightforward using the built-in
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
csv module for reading and writing tabular data, or pandas for advanced analysisβessential for data processing tasks like importing/exporting datasets in interviews.# Reading CSV with csv module (basic)
import csv
with open('data.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader) # data = [['Name', 'Age'], ['Alice', '30'], ['Bob', '25']]
# Writing CSV with csv module
import csv
with open('output.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(['Name', 'Age']) # Header
writer.writerows([['Alice', 30], ['Bob', 25]]) # Data rows
# Advanced: Reading with pandas (handles headers, missing values)
import pandas as pd
df = pd.read_csv('data.csv') # df = DataFrame with columns 'Name', 'Age'
print(df.head()) # Output: First 5 rows preview
# Writing with pandas
df.to_csv('output.csv', index=False) # Saves without row indices
#python #csv #pandas #datahandling #fileio #interviewtips
π @DataScience4
# Real-World Case Study: E-commerce Product Pipeline
import boto3
from PIL import Image
import io
def process_product_image(s3_bucket, s3_key):
# 1. Download from S3
s3 = boto3.client('s3')
response = s3.get_object(Bucket=s3_bucket, Key=s3_key)
img = Image.open(io.BytesIO(response['Body'].read()))
# 2. Standardize dimensions
img = img.convert("RGB")
img = img.resize((1200, 1200), Image.LANCZOS)
# 3. Remove background (simplified)
# In practice: use rembg or AWS Rekognition
img = remove_background(img)
# 4. Generate variants
variants = {
"web": img.resize((800, 800)),
"mobile": img.resize((400, 400)),
"thumbnail": img.resize((100, 100))
}
# 5. Upload to CDN
for name, variant in variants.items():
buffer = io.BytesIO()
variant.save(buffer, "JPEG", quality=95)
s3.upload_fileobj(
buffer,
"cdn-bucket",
f"products/{s3_key.split('/')[-1].split('.')[0]}_{name}.jpg",
ExtraArgs={'ContentType': 'image/jpeg', 'CacheControl': 'max-age=31536000'}
)
# 6. Generate WebP version
webp_buffer = io.BytesIO()
img.save(webp_buffer, "WEBP", quality=85)
s3.upload_fileobj(webp_buffer, "cdn-bucket", f"products/{s3_key.split('/')[-1].split('.')[0]}.webp")
process_product_image("user-uploads", "products/summer_dress.jpg")
By: @DataScienceM π
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
β€1
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβmaster this to create viral tools and ace full-stack interviews! π€
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
https://t.iss.one/DataScienceMπ¦Ύ
# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters
async def start(update, context):
await update.message.reply_text(
"β¨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)
app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()
# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes
openai.api_key = os.getenv("OPENAI_API_KEY")
async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("β Usage: /generate cute robot astronaut")
return
prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"π¨ Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"π₯ Error: {str(e)}")
app.add_handler(CommandHandler("generate", generate))
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
β€1
π‘ Building a Simple Convolutional Neural Network (CNN)
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
Constructing a basic Convolutional Neural Network (CNN) is a fundamental step in deep learning for image processing. Using TensorFlow's Keras API, we can define a network with convolutional, pooling, and dense layers to classify images. This example sets up a simple CNN to recognize handwritten digits from the MNIST dataset.
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import numpy as np
# 1. Load and preprocess the MNIST dataset
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Reshape images for CNN: (batch_size, height, width, channels)
# MNIST images are 28x28 grayscale, so channels = 1
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255
# 2. Define the CNN architecture
model = models.Sequential()
# First Convolutional Block
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# Second Convolutional Block
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# Flatten the 3D output to 1D for the Dense layers
model.add(layers.Flatten())
# Dense (fully connected) layers
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax')) # Output layer for 10 classes (digits 0-9)
# 3. Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Print a summary of the model layers
model.summary()
# 4. Train the model (uncomment to run training)
# print("\nTraining the model...")
# model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_split=0.1)
# 5. Evaluate the model (uncomment to run evaluation)
# print("\nEvaluating the model...")
# test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
# print(f"Test accuracy: {test_acc:.4f}")
Code explanation: This script defines a simple CNN using Keras. It loads and normalizes MNIST images. The
Sequential model adds Conv2D layers for feature extraction, MaxPooling2D for downsampling, a Flatten layer to transition to 1D, and Dense layers for classification. The model is then compiled with an optimizer, loss function, and metrics, and a summary of its architecture is printed. Training and evaluation steps are included as commented-out examples.#Python #DeepLearning #CNN #Keras #TensorFlow
βββββββββββββββ
By: @DataScienceM β¨
π‘ Python: Simple K-Means Clustering Project
K-Means is a popular unsupervised machine learning algorithm used to partition
Code explanation: This script loads the Iris dataset, scales its features using
#Python #MachineLearning #KMeans #Clustering #DataScience
βββββββββββββββ
By: @DataScienceM β¨
K-Means is a popular unsupervised machine learning algorithm used to partition
n observations into k clusters, where each observation belongs to the cluster with the nearest mean (centroid). This simple project demonstrates K-Means on the classic Iris dataset using scikit-learn to group similar flower species based on their measurements.import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np
# 1. Load the Iris dataset
iris = load_iris()
X = iris.data # Features (sepal length, sepal width, petal length, petal width)
y = iris.target # True labels (0, 1, 2 for different species) - not used by KMeans
# 2. (Optional but recommended) Scale the features
# K-Means is sensitive to the scale of features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 3. Define and train the K-Means model
# We know there are 3 species in Iris, so we set n_clusters=3
kmeans = KMeans(n_clusters=3, random_state=42, n_init=10) # n_init is important for robust results
kmeans.fit(X_scaled)
# 4. Get the cluster assignments for each data point
labels = kmeans.labels_
# 5. Get the coordinates of the cluster centroids
centroids = kmeans.cluster_centers_
# 6. Visualize the clusters (using first two features for simplicity)
plt.figure(figsize=(8, 6))
# Plot each cluster
colors = ['red', 'green', 'blue']
for i in range(3):
plt.scatter(X_scaled[labels == i, 0], X_scaled[labels == i, 1],
s=50, c=colors[i], label=f'Cluster {i+1}', alpha=0.7)
# Plot the centroids
plt.scatter(centroids[:, 0], centroids[:, 1],
s=200, marker='X', c='black', label='Centroids', edgecolor='white')
plt.title('K-Means Clustering on Iris Dataset (Scaled Features)')
plt.xlabel('Scaled Sepal Length')
plt.ylabel('Scaled Sepal Width')
plt.legend()
plt.grid(True)
plt.show()
# You can also compare with true labels (for evaluation, not part of clustering process itself)
# print("True labels:", y)
# print("K-Means labels:", labels)
Code explanation: This script loads the Iris dataset, scales its features using
StandardScaler, and then applies KMeans to group the data into 3 clusters. It visualizes the resulting clusters and their centroids using a scatter plot with the first two scaled features.#Python #MachineLearning #KMeans #Clustering #DataScience
βββββββββββββββ
By: @DataScienceM β¨
π€π§ Reflex: Build Full-Stack Web Apps in Pure Python β Fast, Flexible and Powerful
ποΈ 29 Oct 2025
π AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
ποΈ 29 Oct 2025
π AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps