📚 Calculus and Linear Algebra (2023)
🔗 Download Link: https://filelu.com/3lfmoylzu2ls
💬 Tags: #Calculus #LinearAlgebra
⛔️ ➕ interaction = ➕ books
✅ Click here 👉: Surprise 🎁
🔗 Download Link: https://filelu.com/3lfmoylzu2ls
💬 Tags: #Calculus #LinearAlgebra
⛔️ ➕ interaction = ➕ books
✅ Click here 👉: Surprise 🎁
❤🔥2❤1
📚 Introduction To Linear Algebra (2022)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/67
💬 Tags: #LinearAlgebra
USEFUL CHANNELS FOR YOU
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/67
💬 Tags: #LinearAlgebra
USEFUL CHANNELS FOR YOU
❤6👍4
📚 Linear Algebra Tools for Data Mining (2023)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/384
💬 Tags: #DataMining #LinearAlgebra
USEFUL CHANNELS FOR YOU
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/384
💬 Tags: #DataMining #LinearAlgebra
USEFUL CHANNELS FOR YOU
❤5👍4🔥1
📚 Linear Algebra (2023)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/577
💬 Tags: #LinearAlgebra
USEFUL CHANNELS FOR YOU
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/577
💬 Tags: #LinearAlgebra
USEFUL CHANNELS FOR YOU
👍30❤9🔥1
📚 Linear Algebra Done Right (2024)
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1196
💬 Tags: #LinearAlgebra
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
1⃣ Join Channel Download:
https://t.iss.one/+MhmkscCzIYQ2MmM8
2⃣ Download Book: https://t.iss.one/c/1854405158/1196
💬 Tags: #LinearAlgebra
👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍10
Forwarded from Python | Machine Learning | Coding | R
SciPy.pdf
206.4 KB
Unlock the full power of SciPy with my comprehensive cheat sheet!
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
💯 BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Master essential functions for:
Function optimization and solving equations
Linear algebra operations
ODE integration and statistical analysis
Signal processing and spatial data manipulation
Data clustering and distance computation ...and much more!
#Python #SciPy #MachineLearning #DataScience #CheatSheet #ArtificialIntelligence #Optimization #LinearAlgebra #SignalProcessing #BigData
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Topic: Python SciPy – From Easy to Top: Part 4 of 6: Linear Algebra with SciPy
---
1. Introduction to Linear Algebra in SciPy
• Linear algebra is fundamental in scientific computing, machine learning, and data science.
• SciPy provides advanced linear algebra routines built on top of LAPACK and BLAS libraries.
• The main sub-package is
---
2. Basic Matrix Operations
You can create matrices using NumPy arrays:
---
3. Matrix Addition and Multiplication
---
4. Using `scipy.linalg` for Advanced Operations
Import SciPy linear algebra module:
---
5. Matrix Inverse
Calculate the inverse of a matrix (if invertible):
---
6. Determinant
Calculate the determinant:
---
7. Eigenvalues and Eigenvectors
Find eigenvalues and eigenvectors:
---
8. Solving Linear Systems
Solve
---
9. Singular Value Decomposition (SVD)
Decompose matrix A into U, Σ, and V^T:
---
10. LU Decomposition
Decompose matrix A into lower and upper triangular matrices:
---
11. QR Decomposition
Factorize A into Q and R matrices:
---
12. Norms of Vectors and Matrices
Calculate different norms:
---
13. Checking if a Matrix is Positive Definite
Try Cholesky decomposition:
---
14. Summary
• SciPy’s
• Operations include inverse, determinant, eigenvalues, decompositions, and solving linear systems.
• These tools are essential for many scientific and engineering problems.
---
Exercise
• Compute the eigenvalues and eigenvectors of the matrix \[\[4, 2], \[1, 3]].
• Solve the system of equations represented by:
2x + 3y = 8
5x + 4y = 13
• Perform SVD on the matrix \[\[1, 0], \[0, -1]] and explain the singular values.
---
#Python #SciPy #LinearAlgebra #SVD #Decomposition #ScientificComputing
https://t.iss.one/DataScienceM
---
1. Introduction to Linear Algebra in SciPy
• Linear algebra is fundamental in scientific computing, machine learning, and data science.
• SciPy provides advanced linear algebra routines built on top of LAPACK and BLAS libraries.
• The main sub-package is
scipy.linalg which extends NumPy’s linear algebra capabilities.---
2. Basic Matrix Operations
You can create matrices using NumPy arrays:
import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
---
3. Matrix Addition and Multiplication
# Addition
C = A + B
print("Matrix Addition:\n", C)
# Element-wise Multiplication
D = A * B
print("Element-wise Multiplication:\n", D)
# Matrix Multiplication
E = np.dot(A, B)
print("Matrix Multiplication:\n", E)
---
4. Using `scipy.linalg` for Advanced Operations
Import SciPy linear algebra module:
from scipy import linalg
---
5. Matrix Inverse
Calculate the inverse of a matrix (if invertible):
inv_A = linalg.inv(A)
print("Inverse of A:\n", inv_A)
---
6. Determinant
Calculate the determinant:
det_A = linalg.det(A)
print("Determinant of A:", det_A)
---
7. Eigenvalues and Eigenvectors
Find eigenvalues and eigenvectors:
eigvals, eigvecs = linalg.eig(A)
print("Eigenvalues:\n", eigvals)
print("Eigenvectors:\n", eigvecs)
---
8. Solving Linear Systems
Solve
Ax = b where b is a vector:b = np.array([5, 11])
x = linalg.solve(A, b)
print("Solution x:\n", x)
---
9. Singular Value Decomposition (SVD)
Decompose matrix A into U, Σ, and V^T:
U, s, VT = linalg.svd(A)
print("U matrix:\n", U)
print("Singular values:", s)
print("V^T matrix:\n", VT)
---
10. LU Decomposition
Decompose matrix A into lower and upper triangular matrices:
P, L, U = linalg.lu(A)
print("P matrix:\n", P)
print("L matrix:\n", L)
print("U matrix:\n", U)
---
11. QR Decomposition
Factorize A into Q and R matrices:
Q, R = linalg.qr(A)
print("Q matrix:\n", Q)
print("R matrix:\n", R)
---
12. Norms of Vectors and Matrices
Calculate different norms:
# Vector norm
v = np.array([1, -2, 3])
norm_v = linalg.norm(v)
print("Vector norm:", norm_v)
# Matrix norm (Frobenius norm)
norm_A = linalg.norm(A, 'fro')
print("Matrix Frobenius norm:", norm_A)
---
13. Checking if a Matrix is Positive Definite
Try Cholesky decomposition:
try:
L = linalg.cholesky(A)
print("Matrix is positive definite")
except linalg.LinAlgError:
print("Matrix is not positive definite")
---
14. Summary
• SciPy’s
linalg module provides extensive linear algebra tools beyond NumPy.• Operations include inverse, determinant, eigenvalues, decompositions, and solving linear systems.
• These tools are essential for many scientific and engineering problems.
---
Exercise
• Compute the eigenvalues and eigenvectors of the matrix \[\[4, 2], \[1, 3]].
• Solve the system of equations represented by:
2x + 3y = 8
5x + 4y = 13
• Perform SVD on the matrix \[\[1, 0], \[0, -1]] and explain the singular values.
---
#Python #SciPy #LinearAlgebra #SVD #Decomposition #ScientificComputing
https://t.iss.one/DataScienceM
❤8
Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Create a new array with an inserted axis using
Python tip:
Use
Python tip:
Use
Python tip:
Use
Python tip:
Use
#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis
━━━━━━━━━━━━━━━
By: @DataScienceM ✨
Use
np.polyval() to evaluate a polynomial at specific values.import numpy as np
poly_coeffs = np.array([3, 0, 1]) # Represents 3x^2 + 0x + 1
x_values = np.array([0, 1, 2])
y_values = np.polyval(poly_coeffs, x_values)
print(y_values) # Output: [ 1 4 13] (3*0^2+1, 3*1^2+1, 3*2^2+1)
Python tip:
Use
np.polyfit() to find the coefficients of a polynomial that best fits a set of data points.import numpy as np
x = np.array([0, 1, 2, 3])
y = np.array([0, 0.8, 0.9, 0.1])
coefficients = np.polyfit(x, y, 2) # Fit a 2nd degree polynomial
print(coefficients)
Python tip:
Use
np.clip() to limit values in an array to a specified range, as an instance method.import numpy as np
arr = np.array([1, 10, 3, 15, 6])
clipped_arr = arr.clip(min=3, max=10)
print(clipped_arr)
Python tip:
Use
np.squeeze() to remove single-dimensional entries from the shape of an array.import numpy as np
arr = np.zeros((1, 3, 1, 4))
squeezed_arr = np.squeeze(arr) # Removes axes of length 1
print(squeezed_arr.shape) # Output: (3, 4)
Python tip:
Create a new array with an inserted axis using
np.expand_dims().import numpy as np
arr = np.array([1, 2, 3]) # Shape (3,)
expanded_arr = np.expand_dims(arr, axis=0) # Add a new axis at position 0
print(expanded_arr.shape) # Output: (1, 3)
Python tip:
Use
np.ptp() (peak-to-peak) to find the range (max - min) of an array.import numpy as np
arr = np.array([1, 5, 2, 8, 3])
peak_to_peak = np.ptp(arr)
print(peak_to_peak) # Output: 7 (8 - 1)
Python tip:
Use
np.prod() to calculate the product of array elements.import numpy as np
arr = np.array([1, 2, 3, 4])
product = np.prod(arr)
print(product) # Output: 24 (1 * 2 * 3 * 4)
Python tip:
Use
np.allclose() to compare two arrays for equality within a tolerance.import numpy as np
a = np.array([1.0, 2.0])
b = np.array([1.00000000001, 2.0])
print(np.allclose(a, b)) # Output: True
Python tip:
Use
np.array_split() to split an array into N approximately equal sub-arrays.import numpy as np
arr = np.arange(7)
split_arr = np.array_split(arr, 3) # Split into 3 parts
print(split_arr)
#NumPyTips #PythonNumericalComputing #ArrayManipulation #DataScience #MachineLearning #PythonTips #NumPyForBeginners #Vectorization #LinearAlgebra #StatisticalAnalysis
━━━━━━━━━━━━━━━
By: @DataScienceM ✨