Андрей Патраков RunAvia
1.73K subscribers
1.95K photos
276 videos
55 files
2.69K links
Официальный канал Андрея Патракова Patrakov.com для клиентов сервиса RunAvia.ru и консалтинговой сети AIM Group в СНГ
Download Telegram
Нужно ли понятие "малая авиация", часть 2

#партнёры #аналитика #ХурсевичСергей

Из законодательства и из рекомендаций ICAO прямо следует недопустимость ведения коммерческих воздушных перевозок и авиаработ воздушными судами некоммерческой авиации и лётчиками-любителями.

Существующее законодательство не исключает возможности дифференциации федеральных авиационных правил и иных подзаконных актов для большой и малой коммерческой авиации, а предполагает такую возможность, при условии стратегической непротиворечивости соответствующих систем требований. Наконец, необходимо обеспечить простую, дешёвую и прозрачную процедуру, соблюдая которую эксплуатанты АОН смогут перейти в разряд коммерческих эксплуатантов, а частные пилоты в короткие сроки получить коммерческую лицензию.
Регулирование "Малой коммерческой авиации"

#партнёры #аналитика #ХурсевичСергей

Выстраивание полноценного регулирования малой коммерческой авиации – то есть коммерческой авиации, использующей пилотируемые и беспилотные воздушные суда самолётного типа – взлётной массой менее 5700 кг (иного типа – менее 3100 кг), позволит выйти из методологического тупика, вследствие которого коммерческая деятельность с использованием лёгких и сверхлёгких воздушных судов затруднена, а эксплуатанты и регулятор вынуждены формировать огромную "серую/чёрную зону", в которой некоммерческие воздушные суда и любительский персонал с большей или меньшей степенью легитимности участвуют в коммерческих воздушных перевозках и авиаработах.

В этом контексте большая авиация – это авиация, использующая пилотируемые и беспилотные воздушные суда самолётного типа – взлётной массой более 5700 кг (вертолётного типа – более 3100 кг.). Она также может подразделяться на коммерческий и некоммерческий сегмент (АОН).
Экспериментальные правовые режимы по эксплуатации беспилотных авиационных систем, часть 1

#партнёры #аналитика #ХурсевичСергей

Серьёзный шаг по преодолению инертности отечественного воздушного законодательства сделан благодаря введению в Камчатском крае, Чукотском, Ханты-Мансийском, Ямало-Ненецком автономных округах и Томской области экспериментальных правовых режимов. На их основе теоретически могут быть преодолены такие барьеры развития беспилотных авиационных систем как:
🔹сертификация эксплуатанта;
🔹сертификация лётной годности воздушных судов;
🔹подготовка и сертификация лётного персонала.

Существующая система ограничений сохраняется в части:
🔹требований к операторам аэродромов, в т.ч. не подлежащих сертификации;
🔹требований к обеспечению транспортной и авиационной безопасности;
🔹процедур и методов управления воздушным движением.
Экспериментальные правовые режимы по эксплуатации беспилотных авиационных систем, часть 2

#партнёры #аналитика #ХурсевичСергей

Лёгкая пилотируемая авиация в эксперимент не включена. Попытки развития экспериментальных правовых режимов в области развития цифровых инноваций по эксплуатации беспилотных авиационных систем сталкиваются с теми же инфраструктурными и регулятивными ограничениями, что и пилотируемая авиация. Из-за отсутствия аэродромов или нерентабельности их содержания беспилотники вертикального взлёта и посадки применяются там, где экономически и технологически целесообразнее применять беспилотные воздушные суда самолётного типа. Например, минимальный уровень рентабельности сколь-нибудь масштабных беспилотных авиаперевозок достижим при условии синергии пилотируемой и беспилотной авиации. Так целевые показатели тарифа на доставку груза для самолётной техники оцениваются на уровне от 15 до 40 коп. за 1 кг на 1 км, а для вертолётной техники — до 1,5-2 руб. за 1 кг на 1 км.

Иными словами, доставка грузов дронами самолётного типа на порядок дешевле доставки альтернативными воздушными судами. Но для эксплуатации и беспилотных, и пилотируемых самолётов нужна практически универсальная аэродромная инфраструктура, создание которой даст возможность для активной эксплуатации экономичных воздушных судов всех типов.
Логика внедрения инноваций, часть 1

#партнёры #аналитика #ХурсевичСергей

Основной проблемой внедрения инноваций в авиации является то обстоятельство, что до анализа статистики применения новой технологии изменения проводить опасно, но до внедрения изменений в практику не будет накоплено должной статистики.

Мировая авиационная система решает эту проблему внедряя существенные организационно-технические и технологические новации по следующей логике:
🔹от лёгкой авиатехники к тяжёлой;
🔹от малонаселённых районов к умеренно и густонаселённым;
🔹от воздушного пространства "VLL" и "G" к воздушному пространству "A".
Логика внедрения инноваций, часть 2

#партнёры #аналитика #ХурсевичСергей

Данный подход хорошо комбинируется с применением технологий подтверждения безопасности на основании статистики по фактическому налёту (functional test), согласно, например, опыту EASA (Doc. No. FTB MOC SC Light-UAS 26.05.2022).

Примером является проект UTM выполненный NASA (What is Unmanned Aircraft Systems Traffic Management?) во взаимодействии с FAA:
🔹1 этап (2015 г.) – полевые испытания, посвящённые тому, как дроны могут использоваться вне населённых пунктов в т.ч. в сельском хозяйстве, пожаротушении и мониторинге инфраструктуры;
🔹2 этап – мониторинг дронов, которые летают в малонаселённых районах, вне прямой видимости оператора, с тестированием технологий оперативного регулирования зон, в т.ч. при проведении поисково-спасательных операций;
🔹3 этап (2018 г.) – безопасное применение БПЛА в умеренно населённых районах;
🔹4 этап (2019 г.) – интегрирование дронов в городские районы.
Наземная инфраструктура PNT, часть 1

#партнёры #аналитика #ХурсевичСергей

Наземная инфраструктура PNT представляет собой воссозданную на новом техническом уровне систему Loran-C, обслуживание которой было прекращено в 2010 г. в США, а в 2015 г. в Канаде, Японии и Европе. Новая система получила название "eLoran" (Enhanced Long Range Navigation). Данная система использует длинноволновый диапазон (100 кГц) гарантирующий загоризонтное распространение сигнала. Благодаря почти полумегаватным передатчикам, существенно повышается устойчивость сигнала к естественным и искусственным помехам, а криптозащита снижает вероятность его подмены. При использовании eLoran обеспечивается точность позиционирования в диапазоне 10-30 метров, и синхронизация с Всемирным скоординированным временем (UTC). Кроме того, современные приёмники позволяют смешивать и согласовывать сигналы от всех передатчиков eLoran и спутников GNSS, а также передавать короткие сообщения, что соответствует тенденции смещения ОрВД в сторону текстовых сообщений (clearances through CPDLC) NextGen Data Comm.
Наземная инфраструктура PNT, часть 2

#партнёры #аналитика #ХурсевичСергей

Учитывая то обстоятельство, что Россия, КНР и Саудовская Аравия не прекращали эксплуатацию системы Loran-C (Чайка), одним из простых и дешёвых решений обеспечения наземной навигации является доработка системы "Чайка" до функционала eLoran.

Варианты технических решений этой задачи, и их практическая отработка может быть обеспечена в Опытном районе. Это позволит гарантировать координатно-временное обеспечение ПВС и БВС на всей территории страны, в том числе в её малонаселённых регионах. По имеющимся оценкам, "на стоимость выведения на орбиту одного спутника системы GPS можно закупить сотню передающих станций LORAN и обслуживать их в течении 20 лет" (Чернышев Ю.П., Беспилотники: киберзащищённость аппаратно-программных средств и каналов обмена информацией).
Вопросы выбора стандарта для проекта UTM, часть 1

#партнёры #аналитика #ХурсевичСергей

Ключевой проблемой организации воздушного движения ПВС и БВС являются вопросы, связанные с идентификацией воздушных судов, обеспечении высокоточной навигации в густонаселённых регионах и внедрить системы предотвращения столкновений. В настоящее время не согласованы и не приняты единые правила по удалённой идентификации беспилотных воздушных судов. Ключевым техническим вопросом, который потребуется решить на старте проекта является вопрос о том, какие стандарты передачи информации и автоматического зависимого наблюдения целесообразно использовать. На данный момент практически у всех стандартов есть свои сторонники и противники.
Вопросы выбора стандарта для проекта UTM, часть 2

#партнёры #аналитика #ХурсевичСергей

Мировое авиационное сообщество с большой осторожностью относится к использованию бортовых передатчиков АЗН-В 1090 ES на малых БВС. В частности, в марте 2019 года Минтранс Канады совместно с поставщиком аэронавигационных услуг NavCanada запретили использование малогабаритных передатчиков АЗН-В 1090 ES в национальном проекте UTM. Это было обусловлено:
🔹недостаточным для массового применения БВС количеством уникальных 24-битных адресов, идентифицирующих принадлежность воздушного судна;
🔹недопустимым уровнем внутрисистемных помех передатчиков множества БВС, делающих невозможным наблюдение за пилотируемыми воздушными судами;
🔹отсутствием кибербезопасности линии передачи данных;
🔹высокими уровнями рабочей нагрузки и внутрисистемных помех для магистральных ВС (Что может UTM? Концепция, мировая практика и перспективы в России).

UAT не допущен к эксплуатации в европейской зоне ICAO.

Малоскоростной и малопопулярный стандарт VDL-4, похоже, не имеет будущего, несмотря на масштабные вложения, сделанные в развитие его инфраструктуры в России.

Исходя из анализа характеристик, стоит всерьёз задуматься о применении перспективного стандарта LDACS, одобренного ICAO.
О квазидиспетчерском управлении воздушным движением, часть 1

#партнёры #аналитика #ХурсевичСергей

На сегодняшний день в России либо обеспечивается дорогое и полноценное диспетчерской обслуживание, либо никакой диспетчеризации не осуществляется. При этом из-за низкой интенсивности использования воздушного пространства многим органам ОВД большую часть рабочего времени не приходится выполнять свою основную функцию – предотвращение столкновений воздушных судов. В этой ситуации остро необходим промежуточный уровень, между диспетчерским управлением и отсутствием всякого управления. Такое "квазидиспетчерское" управление воздушным движением должно быть недорогим или бесплатным для пользователя, но обеспечивать высокий уровень предоставляемых услуг, в первую очередь, высокую безопасность полётов, а также эффективность для решения задач поиска и спасания.
О квазидиспетчерском управлении воздушным движением, часть 2

#партнёры #аналитика #ХурсевичСергей

Развитие квазидиспетчерского управления позволит постепенно сформировать прообраз будущей автоматической системы управления воздушным движением в воздушном пространстве класса G, без которой будет невозможна не только городская аэромобильность, но и любые интенсивные беспилотные полёты.
О внедрении системы FLARM, часть 1

#партнёры #аналитика #ХурсевичСергей

Для быстрого решения задачи обеспечения полётов пилотируемых и беспилотных воздушных судов в едином воздушном пространстве целесообразно локализовать в России апробированную в Европе систему FLARM или её концептуальный аналог. Данные передаваемые от FLARM по зашифрованному радиоканалу:
🔹текущие координаты;
🔹высота полёта;
🔹сигнал-предупреждение о возможном столкновении с указанием направления "угрозы";
🔹идентификатор летательного аппарата;
🔹идентификатор летательного аппарата, с которым возможно столкновение;
🔹прогнозируемая траектория полёта.

Использование этой системы европейскими ПВС и БВС на высотах ниже 3000 м. на порядки превосходит использование аппаратуры стандарта 1090 ES (Информация OpenSkyNetwork и OpenGliderNetwork, 30.5.21, с 11:00 до 12:00).

Система работает по принципу прогнозирования траектории движения относительно близлетящих судов. В то же время система получает траекторию движения от окружающего трафика.
О внедрении системы FLARM, часть 2

#партнёры #аналитика #ХурсевичСергей

Интеллектуальный алгоритм планирования траектории FLARM определяет возможность столкновения с другими судами на основе встроенной модели оценки рисков.

Аппаратура FLARM позволяет эффективно предотвращать столкновения с воздушными судами, оснащёнными аппаратурой стандарта 1090 ES. Воздушные суда с ADS-B, но не оборудованные FLARM, воспринимаются пилотом (внешним пилотом) воздушного судна с FLARM как имеющие приоритет.
О внедрении системы FLARM, часть 3

#партнёры #аналитика #ХурсевичСергей

За 16 лет применения системы FLARM установлено более 50 000 комплектов оборудования, в том числе 20 000 установлено на БВС. Общий налёт воздушных судов с этой системой составляет более 40 млн часов. Оборудование может устанавливаться без интеграции в систему управления воздушным судном, что позволит избежать необходимости повторной сертификации. Таким образом, в России стоит как минимум попытаться учесть отработанную технологию, позволяющую решить задачу ОрВД ПВС и БВС в едином воздушном пространстве, а не пытаться "изобрести велосипед" с нуля.
#АвиасалонМАКС продолжает знакомить читателей с основными тезисами книги Сергея Хурсевича "Авиация России и санкции". В очередном блоке публикаций мы познакомимся с рынками перевозок на местных воздушных линиях и авиационных работ, выполняемых на лёгких воздушных судах.

#партнёры #аналитика #ХурсевичСергей

"Авиация России и санкции", часть 4. Потенциал развития местных воздушных перевозок

Уровень авиационной подвижности жителей удалённых территорий других стран с труднодоступными территориями также в 5-8 раз выше среднего по стране (4,2 поездки в год в Норвегии, 3,3 – в Австралии). В России же авиационная подвижность населения удалённых и труднодоступных регионов на 40% ниже среднероссийских значений – 0,58 поездок на 1 жителя в год (см. Транспортная стратегия Российской Федерации до 2030 года с прогнозом на период до 2035 года).

При применении методологии оценки пропорционально показателям Аляски, где люди летают в восемь раз чаще, чем в остальной Америке, и перевозят по воздуху в 39 раз больше, чем в среднем по стране, нормативная авиационная подвижность только в российской Арктике должна составлять около 20 млн пассажиров в год на 160 млрд руб., исходя из того, что в российской Арктике проживает 2,5 млн человек, или 54% совокупного населения арктических провинций и муниципалитетов мира. Кроме того, в Арктике воздушным транспортом должно перевозиться до 770 тыс. тонн грузов (справочно: весь грузооборот российской авиации – 1,15 млн тонн, из которых 0,84 млн тонн – международные, 0,32 млн тонн – внутренние). При применении этой же методологии в отношении всего населения, проживающего в районах Крайнего Севера и приравненных к ним местностях, пассажироперевозки должны составлять порядка 87 млн пасс. в год на 700 млрд руб., а грузоперевозки воздушным транспортом – от 849 тыс. тонн до 3 млн тонн в год (Расчёты основаны на следующей информации: Денисова Т. Субсидирование местных перевозок в США, Статистические показатели по перевозкам пассажиров гражданской авиацией России, Статистические показатели по перевозкам грузов и почты гражданской авиацией России, Экономические и социальные показатели районов Крайнего Севера и приравненных к ним местностей в 2000-2019 годах).

При доле логистических издержек в ВВП России (16%), на 5 процентных пунктов превышающих среднемировую и вдвое превышающей удельный вес логистических издержек США, существует потенциал для более высокого удельного веса авиационных перевозок в объёме перевозок в России, чем в среднем по миру. Однако, любые выводы, основанные на сопоставлении межстрановых пропорций, уязвимы для критики и недостаточно надёжны из-за множества особенностей каждого государства, не заложенных в модель сравнения. В этой связи достаточный уровень надёжности обеспечивается только при прямом счёте.