1. Установите необходимые библиотеки с помощью pip:
pip install matplotlib seaborn pandas
2. Импортируйте библиотеки, которые вы будете использовать в своем скрипте:
import matplotlib.pyplot as plt
import seaborn as sns
3. Загрузите свой набор данных в pandas DataFrame. Для демонстрации мы будем использовать образец набора данных, предоставленный Seaborn:
import pandas as pd
data = sns.load_dataset("penguins")
4. Создайте график: используйте библиотеку Seaborn для создания простой диаграммы рассеяния:
sns.scatterplot(data=data, x="bill_length_mm", y="bill_depth_mm", hue="species")
plt.title("Penguin Bill Dimensions by Species")
plt.show()
5. Настройте график добавив заголовки, метки и изменив стиль для улучшения читаемости и представления:
plt.xlabel("Bill Length (mm)")
plt.ylabel("Bill Depth (mm)")
plt.grid(True)
plt.show()Почему именно Python используется для визуализации данных?
1. Matplotlib: для базовых графиков.
2. Seaborn: для статистических визуализаций.
3. Plotly: для интерактивных визуализаций.
#python #cheatsheet #doc
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27❤12🔥11
This media is not supported in your browser
VIEW IN TELEGRAM
Забудьте километры кода на Selenium. Helium — это та же мощь, но с вменяемым, коротким и человеческим API, который сокращает скрипты в два раза и позволяет работать с элементами страницы без танцев с бубном.
Chrome, Firefox? Да хоть весь зоопарк браузеров — библиотека разбирается сама.
iFrames, новые окна, ожидания загрузки, поломанные кнопки? Helium делает всё автоматически.
$ python -m pip install helium
# A Helium function:
driver = start_chrome()
# A Selenium API:
driver.execute_script("alert('Hi!');")
#python #soft #web #github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍28🔥9