Data Science by ODS.ai 🦜
46.4K subscribers
620 photos
72 videos
7 files
1.71K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
Forwarded from AbstractDL
To Code, or Not To Code? Насколько важны данные с кодом в претрейне LLM? (by Cohere)

Да, код нужен, и очень сильно. На самом деле уже довольно давно был консенсус на этот счёт, но подробно влияние кода не изучали.

Теперь можно ставить точку в этом вопросе — в Cohere проделали очень подробный ablation study: данные с кодом улучшают не только кодинг и ризонинг, но и даже world knowledge! То есть после их добавления в претрейн модели лучше запоминают текстовые знания.

Статья
👍135🔥2
Qwen2 joins the multimodal race!

2-VL is a new multimodal LLM and comes in two sizes: 2B for on-device usage and 7B under Apache 2.0!

Qwen2 7B VL shows matching performance to GPT-4o mini across different benchmarks!


🧮 Comes in 2 sizes, 2B (2.2B) and 7B (8.3B) using a Vision Encoder
🎥 Can understand videos over 20 minutes for video-based question-answering
🖼️ Qwen2 7B VL around GPT-4o mini performance on VLM Benchmarks
🌍 Multilingual, including most European languages, Japanese, Korean, Arabic, and Vietnamese
📝 Improved OCR and handwritten text extraction
🤗 Available on
@huggingface

🔓 Released under Apache 2.0
🔄 Dynamic image resolutions and M-ROPE (Multimodal Rotary Position Embedding)

Blog: https://qwenlm.github.io/blog/qwen2-vl/
Models: https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d

@opendatascience
🔥9👍61
Forwarded from Yandex for Developers
👀 ICML 2024 глазами ML-лидов Яндекса

The International Conference on Machine Learning — одна из крупнейших международных конференций по машинному обучению.

➡️ В этом году её посетила делегация из 46 яндексоидов. Недавно впечатлениями делился наш коллега Владислав Офицеров, а теперь о своих наблюдениях рассказывают CTO Поиска Алексей Гусаков и ML Brand Director Пётр Ермаков — листайте карточки!

⭐️ Если у вас оформлен Telegram Premium, поддержите наш канал по ссылке

Подписывайтесь:
💬 @Yandex4Developers
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11🤡5👍4🤷‍♂1🌚1
An open source UI to train your own Flux LoRA just landed on Hugging Face 🚀 Also, probably the easiest and cheapest (local training also supported).

https://huggingface.co/spaces/autotrain-projects/train-flux-lora-ease

#Flux #LoRA

@opendatascience
7🔥3👍2
Forwarded from Machinelearning
🌟 Microsoft Research AutoGen Studio: Low-Code интерфейс для быстрого прототипирования агентов LLM.

Microsoft Research обновил AutoGen Studio — Low-Code инструмент для разработчиков , предназначенный для создания, отладки и оценки многоагентных рабочих процессов.
AutoGen Studio разработан для повышения доступности среды управления локальным AI, позволяя разработчикам прототипировать и внедрять многоагентные системы без необходимости обширных знаний в области ML.

AutoGen Studio это веб-интерфейс и API Python. Он гибкий в использовании и его легко можно интегрировать его в различные среды разработки. Простой и понятный дизайн позволяет быстро собирать многоагентные системы с помощью удобного интерфейса drag-n-drop.

AutoGen Studio поддерживает API всех популярных онлайн-провейдеров LLM (OpenAI, Antрropic, Gemini, Groq, Amazon Bedrock, Corehe, MistralAI, TogetherAI ) и локальные бэкэнды :
vLLM, Ollama, LM Studio.

Возможности :

🟢Создание / настройка агентов (пока поддерживаются 2 рабочих процесса агентов на основе UserProxyAgent и AssistantAgent), изменение их конфигурации (например, навыки, температура, модель, системные сообщения агента, модель и т.д.) и объединение их в рабочие процессы;

🟢Чат с агентами по рабочим процессам и определение для них задач;

🟢Просмотр сообщений агента и выходных файлов в пользовательском интерфейсе после запуска агента;

🟢Поддержка сложных рабочих процессов агентов (например, групповой чат и последовательные рабочие процессы);

🟢Улучшение качества работы пользователей (например, потоковая передача промежуточных ответов LLM, лучшее обобщение ответов агентов и т. д.);

🟢AutoGen Studio использует SQLModel (Pydantic + SQLAlchemy). Это обеспечивает связь между сущностями (навыки, модели, агенты и рабочие процессы связаны через таблицы ассоциаций) и поддерживает несколько диалектов бэкенда базы данных, которые есть в SQLAlchemy (SQLite, PostgreSQL, MySQL, Oracle, Microsoft SQL Server).

Roadmap для отслеживания новых функций, решенных проблем и запросов от сообщества разработчиков можно найти в Issues репозитория AutoGen Studio на Github.

⚠️ Примечания от разработчика:

🟠AutoGen Studio не предназначен для использования в качестве готового к продакшену приложения. Это среда прототипирования и разработки процессов и агентов.
🟠AutoGen Studio находится в стадии активной разработки с частыми итерациями коммитов. Документация проекта обновляется синхронно с кодом.
🟠Системные требования к установке: Python 3.10+ и Node.js => 14.15.0.



📌Лицензирование : CC-BY-NC-SA-4.0 License & MIT License


🟡Страница проекта
🟡Документация
🟡Arxiv
🟡Сообщество в Discord
🖥Github [ Stars: 30.2K | Issues: 493 | Forks: 4.4K]


@ai_machinelearning_big_data

#AI #AgentsWorkflow #MLTool #Microsoft #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥42
This media is not supported in your browser
VIEW IN TELEGRAM
🔥Introducing MLR-Copilot: autonomous machine learning research with LLM agents, which

→ generate research ideas
→ implement experiments
→ execute implementation with human feedback

📑Paper https://arxiv.org/abs/2408.14033
🔨Code https://github.com/du-nlp-lab/MLR-Copilot
🤗Demo https://huggingface.co/spaces/du-lab/MLR-Copilot

@opendatascience
👍94🔥2
Законы масштабирования в больших моделях последовательных рекомендаций

Авторы из WeChat и Tencent разбирались, работают ли законы масштабирования нейросетей для рекомендательных систем. Главный вопрос — есть ли улучшение качества рекомендаций при увеличении количества обучаемых параметров? Короткий ответ — да.

Известно, что рост количества параметров моделей иногда коррелирует с улучшением качества решаемых задач. Больше всего работ посвящено законам масштабирования в языковых моделях. В них определяется эмпирическая зависимость функции потерь на отложенной выборке от характеристик обучения. Обычно рассматривают параметры энкодеров и/или декодеров. Для NLP зависимость в логарифмических координатах получается линейной.

В работе об SR авторы масштабировали декодер трансформера и вносили изменения в стратегии обучения, чтобы получить закон масштабирования для рекомендательных систем:
— Для слоёв в начале последовательности декодер-блоков применяли больший dropout-rate, а для слоёв на вершине — меньший, что позволило избежать оверфита.
— Сначала обучались с Adam до полной сходимости, а потом брали чекпоинты, с которых продолжали обучение при помощи SGD, потому что несмотря на лучшую сходимость, итоговый минимум у Adam получался хуже.

Историю взаимодействий форматировали как хронологическую последовательность ID айтемов. То есть задача решалась так же, как в случае с языковыми моделями. Исследователи не брали другую информацию (например, текст айтема), так как хотели изучить работу закона с т. з. поведения пользователя. Модели увеличивали до 0,8B параметров, сравнивая эффекты в разных диапазонах размеров.

Оказалось, закон масштабирования работает для SR-моделей даже в сценариях с ограниченным количеством данных. Авторы показали преимущество больших моделей и на сложных задачах рекомендаций: cold start, long tail, определяли траектории пользователей и смотрели, что происходит при мультидоменном трансфере — во всех случаях масштабирование улучшало результаты.

@RecSysChannel
Разбор подготовил Артем Матвеев
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥21
76-page survey paper on Prompting Techniques

Explores structured understanding and taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities.

📌 The paper focuses on discrete prefix prompts rather than cloze prompts, because prefix prompts are widely used with modern LLM architectures like decoder-only models. It excludes soft prompts and techniques using gradient-based updates.

📌 The paper identifies 58 text-based prompting techniques broken into 6 major categories:

1) In-Context Learning (ICL) - learning from exemplars/instructions in the prompt

2) Zero-Shot - prompting without exemplars

3) Thought Generation - prompting the LLM to articulate reasoning

4) Decomposition - breaking down complex problems

5) Ensembling - using multiple prompts and aggregating outputs

6) Self-Criticism - having the LLM critique its own outputs

📌 For ICL, it discusses key design decisions like exemplar quantity, ordering, label quality, format, and similarity that critically influence output quality. It also covers ICL techniques like K-Nearest Neighbor exemplar selection.

📌 Extends the taxonomy to multilingual prompts, discussing techniques like translate-first prompting and cross-lingual ICL. It also covers multimodal prompts spanning image, audio, video, segmentation, and 3D modalities.

📌 More complex techniques like agents that access external tools, code generation, and retrieval augmented generation are also taxonomized. Evaluation techniques using LLMs are discussed.

📌 Prompting issues like security (prompt hacking), overconfidence, biases, and ambiguity are highlighted. Two case studies - benchmarking techniques on MMLU and an entrapment detection prompt engineering exercise - are presented.

https://arxiv.org/abs/2406.06608

@opendatascience
👍15🔥32
This open-source RAG tool for chatting with your documents is Trending at Number-1 in Github from the past few days

🔍 Open-source RAG UI for document QA
🛠️ Supports local LLMs and API providers
📊 Hybrid RAG pipeline with full-text & vector retrieval
🖼️ Multi-modal QA with figures & tables support
📄 Advanced citations with in-browser PDF preview
🧠 Complex reasoning with question decomposition
⚙️ Configurable settings UI
🔧 Extensible Gradio-based architecture

Key features:

🌐 Host your own RAG web UI with multi-user login
🤖 Organize LLM & embedding models (local & API)
🔎 Hybrid retrieval + re-ranking for quality
📚 Multi-modal parsing and QA across documents
💡 Detailed citations with relevance scores
🧩 Question decomposition for complex queries
🎛️ Adjustable retrieval & generation settings
🔌 Customizable UI and indexing strategies

#rag #ml

Github

@opendatascience
👍208🔥4
Forwarded from Machinelearning
🌟 PuLID+FLUX: перенос внешности на генерации в FLUX .

PuLID (Pure and Lightning ID Customization) - метод генерации на основе внешности для диффузных моделей с управлением текстовым промптом. Ключевое преимущество PuLID состоит в его способности генерировать изображения с высокой степенью соответствия заданной личности, следуя заданным стилю и композиции.

PuLID для SD существует относительно давно и неплохо работал с моделями SDXL. Теперь этот метод стал доступен для FLUX-dev:

🟢ID-кодер перенесен из структуры MLP в структуру Transformer;

🟢добавлены дополнительные блоки перекрестного внимания чередованием с DIT-блоками для взаимодействия между ID и DIT;

🟢SDXL-Lightning, который в оригинальном методе PuLID отвечал за первоначальную генерацию шума в латентном пространстве, в PuLID для FLUX опционален;

🟢добавлена поддержка fp8-версий FLUX для запуска на потребительских GPU;

🟢запуск bf16 на RTX 3090-4090 возможен с параметром --aggressive_offload, но генерация будет выполняться очень, очень, очень медленно.

В PuLID for FLUX есть два критически важных гиперпараметра:

timestep to start inserting ID. Этот параметр управляет там, в какой момент ID (лицо с входного изображения) будет вставлен в DIT (значение 0 - ID будет вставляться с первого шага). Градация: чем меньше значение - тем более похожим на исходный портрет будет результат. Рекомендованное значение для фотореализма - 4.

true CFG scale. Параметр, модулирующий CFG-значение. Исходный процесс CFG метода PuLID, который требовал удвоенного количества этапов вывода, преобразован в шкалу управления чтобы имитировать истинный процесс CFG с половиной шагов инференса.

Для возможности гибкой настройки результатов, разработчик оставил оба гиперпараметра : CFG FLUX и true CFG scale. Фотореализм получается лучше с применением true CFG scale, но если финальное сходство внешности с оригиналом не устраивает - вы можете перейти на обычный CFG.

Запуск возможен несколькими способами: GradioUI, Google Collab (free tier), Google Collab (pro tier) или с одним из имплементаций для среды ComfyUI:

🟠собственная реализация сообщества ComfyUI;
🟠diffusers-based implementation.

⚠️ Важно!

🟢проект находится в бета-версии, точность ID может быть невысокой для некоторых мужcких лиц, возможно, модель нуждается в дополнительном обучении;

🟢для FLUX-FP8 версия Pytorch >= 2.0, для остальных >=2.4.1

▶️Установка и запуск GradioUI:

# clone PuLID repo
git clone https://github.com/ToTheBeginning/PuLID.git
cd PuLID

# create conda env
conda create --name pulid python=3.10

# activate env
conda activate pulid

# Install dependent packages
# 1. For SDXL or Flux-bf16, install the following
pip install -r requirements.txt

# 2. For Flux-fp8, install this
pip install -r requirements_fp8.txt

# Run Gradio UI
python app.py


📌Лицензирование : Apache 2.0 License.


🟡Arxiv
🟡Demo
🟡Google Collab
🖥Github


@ai_machinelearning_big_data

#AI #ML #FLUX #GenAI #PuLID
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥75